首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.  相似文献   

2.
Sea urchins can cause extensive damage to kelp forests, and their overgrazing can create extensive barren areas, leading to a loss of biodiversity. Barrens may persist when the recruitment of kelp, which occurs through the microscopic haploid gametophyte stage, is suppressed. However, the ecology of kelp gametophytes is poorly understood, and here we investigate if grazing by juvenile urchins on kelp gametophytes can suppress kelp recruitment and if this is exacerbated by climate change. We compared grazing of Ecklonia radiata gametophytes by two species of juvenile urchins, the tropical Tripneustes gratilla and the temperate Centrostephanus rodgersii, at winter (19°C), summer (23°C), and ocean warming (26°C) temperatures for the low-latitude range edge of E. radiata, which is vulnerable to ocean warming. We examined the rate of recovery of gametophytes following grazing and determined whether they survived and formed sporophytes after ingestion by sea urchins. Both T. gratilla and C. rodgersii grazed E. radiata gametophytes, reducing their abundance compared to no grazing controls. Surprisingly, temperature did not influence grazing rates, but gametophytes did not recover from grazing in the ocean warming (26°C) treatment. Gametophytes survived ingestion by both species of sea urchin and formed sporophytes after ingestion by T. gratilla, but not C. rodgersii. These results suggest complex grazer–gametophyte interactions, in which both negative (reduced abundance and poor recovery with warming) and positive (facilitated recruitment) effects are possible. Small grazers may play a more important role in kelp ecosystem function than previously thought and should be considered in our understanding of alternate stable states.  相似文献   

3.
4.
The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate‐driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf‐forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low‐latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat‐forming species to more simple habitats dominated by algal turfs.  相似文献   

5.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

6.
Rapid ocean warming is affecting kelp forests globally. While the sporophyte life stage has been well studied for many species, the microscopic life stages of laminarian kelps have been understudied, particularly regarding spatial and temporal variations in thermal tolerance and their interaction. We investigated the thermal tolerance of growth, survival, development, and fertilization of Ecklonia radiata gametophytes, derived from zoospores sampled from two sites in Tasmania, Australia, throughout a year, over a temperature gradient (3–30°C). For growth we found a relatively stable thermal optimum at ~20.5°C and stable thermal maxima (25.3–27.7°C). The magnitude of growth was highly variable and depended on season and site, with no consistent spatial pattern for growth and gametophyte size. Survival also had a relatively stable thermal optimum of ~17°C, 3°C below the optimum for growth. Gametophytes grew to single cells between 5 and 25°C, but sporophytes were only observed between 10 and 20°C, indicating reproductive failure outside this range. The results reveal complex effects of source population and season of collection on gametophyte performance in E. radiata, with implications when comparing results from material collected at different localities and times. In Tasmania, gametophytes grow considerably below the estimated thermal maxima and thermal optima that are currently only reached during summer heatwaves, whereas optima for survival (~17°C) are frequently reached and surpassed during heatwaves, which may affect the persistence and recruitment of E. radiata in a warmer climate.  相似文献   

7.
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.  相似文献   

8.
Quaternary glacial–interglacial cycles create lasting biogeographic, demographic and genetic effects on ecosystems, yet the ecological effects of ice ages on benthic marine communities are unknown. We analysed long-term datasets to develop a niche-based model of southern Californian giant kelp (Macrocystis pyrifera) forest distribution as a function of oceanography and geomorphology, and synthesized palaeo-oceanographic records to show that late Quaternary climate change probably drove high millennial variability in the distribution and productivity of this foundation species. Our predictions suggest that kelp forest biomass increased up to threefold from the glacial maximum to the mid-Holocene, then rapidly declined by 40–70 per cent to present levels. The peak in kelp forest productivity would have coincided with the earliest coastal archaeological sites in the New World. Similar late Quaternary changes in kelp forest distribution and productivity probably occurred in coastal upwelling systems along active continental margins worldwide, which would have resulted in complex shifts in the relative productivity of terrestrial and marine components of coastal ecosystems.  相似文献   

9.
Giant kelp, Macrocystis pyrifera (Linnaeus) C. Agardh, is the subject of intense breeding studies for marine biomass production and conservation of natural resources. In this context, six gametophyte pairs and a sporophyte offspring of Macrocystis from South America were analyzed by flow cytometry. Minimum relative DNA content per cell (1C) was found in five males. Unexpectedly, nuclei of all female gametophytes contained approximately double the DNA content (2C) of males; the male gametophyte from one locality also contained 2C, likely a spontaneous natural diploid variant. The results illustrate a sex‐specific difference in nuclear DNA content among Macrocystis gametophytes, with the chromosomes of the females in a polytenic condition. This correlates with significantly larger cell sizes in female gametophytes compared to males and resource allocation in oogamous reproduction. The results provide key information for the interpretation of DNA measurements in kelp life cycle stages and prompt further research on the regulation of the cell cycle, metabolic activity, sex determination, and sporophyte development.  相似文献   

10.
The sensitivity of kelps to elevated temperatures has been linked to recent declines in some kelp populations, with cascading impacts on marine communities. However, it remains unclear how thermal stress affects the ability of kelps to respond to other environmental factors, which could influence their vulnerability to climate change. We investigated the effect of thermal stress on the ability of the bull kelp Nereocystis luetkeana to acclimate to its surrounding hydrodynamic environment through tension-regulated plasticity in blade morphology. We first determined optimal and stressful temperatures for N. luetkeana by measuring growth over nine temperatures from 5°C to 22°C. We then exposed N. luetkeana blades to a factorial combination of temperature (13°C and 20°C) and tension (0.5 N and 2.0 N) simulating different flow conditions, and measured changes in blade length and width after 7 days. The temperature at which N. luetkeana exhibited maximum growth was estimated to be ~11.9°C, though growth was high over a relatively wide temperature range. When thermally stressed, N. luetkeana maintained morphological responses to simulated high flow, but were inhibited from acclimating to low flow, indicated by an inability of blades to widen. Our results suggest that N. luetkeana in sheltered habitats may be particularly vulnerable to climate warming, where an inability to adjust blade morphology to local hydrodynamic conditions could drive declines at sublethal levels of warming. As ecologically important foundation species, declines in sheltered kelp populations could result in major biodiversity loss and disrupt ecosystem function.  相似文献   

11.
The absorption of anthropogenic CO2 by the oceans is causing a reduction in the pH of the surface waters termed ocean acidification (OA). This could have substantial effects on marine coastal environments where fleshy (non‐calcareous) macroalgae are dominant primary producers and ecosystem engineers. Few OA studies have focused on the early life stages of large macroalgae such as kelps. This study evaluated the effects of seawater pH on the ontogenic development of meiospores of the native kelp Macrocystis pyrifera and the invasive kelp Undaria pinnatifida, in south‐eastern New Zealand. Meiospores of both kelps were released into four seawater pH treatments (pHT 7.20, extreme OA predicted for 2300; pHT 7.65, OA predicted for 2100; pHT 8.01, ambient pH; and pHT 8.40, pre‐industrial pH) and cultured for 15 d. Meiospore germination, germling growth rate, and gametophyte size and sex ratio were monitored and measured. Exposure to reduced pHT (7.20 and 7.65) had positive effects on germling growth rate and gametophyte size in both M. pyrifera and U. pinnatifida, whereas, higher pHT (8.01 and 8.40) reduced the gametophyte size in both kelps. Sex ratio of gametophytes of both kelps was biased toward females under all pHT treatments, except for U. pinnatifida at pHT 7.65. Germling growth rate under OA was significantly higher in M. pyrifera compared to U. pinnatifida but gametophyte development was equal for both kelps under all seawater pHT treatments, indicating that the microscopic stages of the native M. pyrifera and the invasive U. pinnatifida will respond similarly to OA.  相似文献   

12.
The effects of concurrent ocean warming and acidification on Antarctic marine benthos warrant investigation as little is known about potential synergies between these climate change stressors. We examined the interactive effects of warming and acidification on fertilization and embryonic development of the ecologically important sea urchin Sterechinus neumayeri reared from fertilization in elevated temperature (+1.5°C and 3°C) and decreased pH (?0.3 and ?0.5 pH units) treatments. Fertilization using gametes from multiple males and females, to represent populations of spawners, was resilient to acidification at ambient temperature (0°C). At elevated temperatures, there was a negative interactive effect of temperature and pH on percentage of fertilization (11% reduction at 3°C). For cleavage stage embryos, there was a significant, but small reduction (6%) in the percentage of normal embryos at pH 7.5. For blastulae, a 10–11% decrease in normal development occurred in the +3°C treatments across all pH levels. Our results highlight the importance of considering the impacts of both temperature and pH in assessing the life history response of S. neumayeri in a changing polar ocean. While fertilization and development to the blastula stage were robust to levels of temperature and pH change predicted over coming decades, deleterious interactive effects were evident between these stressors at levels projected to occur by 2100 and beyond.  相似文献   

13.
Climate change refugia in the terrestrial biosphere are areas where species are protected from global environmental change and arise from natural heterogeneity in landscapes and climate. Within the marine realm, ocean acidification, or the global decline in seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in seawater carbon dioxide (CO2) chemistry, however, presents an opportunity to identify ocean acidification refugia (OAR) for marine species. Here, we review the literature to examine the impacts of variable CO2 chemistry on biological responses to ocean acidification and develop a framework of definitions and criteria that connects current OAR research to management goals. Under the concept of managing vulnerability, the most likely mechanisms by which OAR can mitigate ocean acidification impacts are by reducing exposure to harmful conditions or enhancing adaptive capacity. While local management options, such as OAR, show some promise, they present unique challenges, and reducing global anthropogenic CO2 emissions must remain a priority.  相似文献   

14.
Kelp forests are among the most valuable ecosystems on Earth, but they are increasingly being degraded and lost due to a range of human-related stressors, leading to recent calls for their improved management and conservation. One of the primary tools to conserve marine species and biodiversity is the establishment of marine protected areas (MPAs). International commitments to protect 30% of the world's ecosystems are gaining momentum, offering a promising avenue to secure kelp forests into the Anthropocene. However, a clear understanding of the efficacy of MPAs for conserving kelp forests in a changing ocean is lacking. In this perspective, we question whether strengthened global protection will create meaningful conservation outcomes for kelp forests. We explore the benefits of MPAs for kelp conservation under a suite of different stressors, focusing on empirical evidence from protected kelp forests. We show that MPAs can be effective against some drivers of kelp loss (e.g., overgrazing, kelp harvesting), particularly when they are maintained in the long-term and enforced as no-take areas. There is also some evidence that MPAs can reduce impacts of climate change through building resilience in multi-stressor situations. However, MPAs also often fail to provide protection against ocean warming, marine heatwaves, coastal darkening, and pollution, which have emerged as dominant drivers of kelp forest loss globally. Although well-enforced MPAs should remain an important tool to protect kelp forests, successful kelp conservation will require implementing an additional suite of management solutions that target these accelerating threats.  相似文献   

15.
海洋酸化对珊瑚礁生态系统的影响研究进展   总被引:1,自引:0,他引:1  
张成龙  黄晖  黄良民  刘胜 《生态学报》2012,32(5):1606-1615
目前,大气CO2浓度的升高已导致海水pH值比工业革命前下降了约0.1,海水碳酸盐平衡体系随之变化,进而影响珊瑚礁生态系统的健康。近年来的研究表明海洋酸化导致造礁石珊瑚幼体补充和群落恢复更加困难,造礁石珊瑚和其它造礁生物(Reef-building organisms)钙化率降低甚至溶解,乃至影响珊瑚礁鱼类的生命活动。虽然海洋酸化对造礁石珊瑚光合作用的影响不显著,但珊瑚-虫黄藻共生体系会受到一定影响。建议选择典型海区进行长期系统监测,结合室内与原位模拟试验,从个体、种群、群落到系统不同层面,运用生理学和分子生物学技术,结合生态学研究手段,综合研究珊瑚的相应响应,以期深入认识海洋酸化对珊瑚礁生态系统健康(例如珊瑚白化)的影响及其效应。  相似文献   

16.
The annual kelp Eckloniopsis radicosa is distributed along Japanese coasts and occurs within the area with a February isotherm ranging 15–18°C and August isotherm ranging 25–28°C. In this study, the effects of temperature on the gametophyte growth and maturation, and the young sporophyte growth of E. radicosa were examined and the results are discussed in relation to the distribution of other warm‐adapted kelp species and the potential effects of climate change. The optimal temperature ranges for growth of male and female gametophytes were 23–27°C and 20–26°C, respectively. The upper survival temperature for gametophyte growth was 31°C for males and 30°C for females, respectively. The optimal temperature range for maturation of female gametophytes was ≤23°C. The optimal temperature range for growth of young sporophytes was 14–22°C. It was clarified that E. radicosa has the most warm‐adapted characteristics for growth and maturation of gametophytes among members of the Laminariales studied so far. The natural seawater temperature ranges during the growth and maturation seasons for gametophytes of E. radicosa, as well as the growth season for young sporophytes near to the northern and southern distribution limits (Izu‐Oshima: 14.9–24.5°C, Ichiki‐kushikino: 17.1–29.6°C), agreed with the experimentally determined temperature requirements. The warm‐adapted gametophyte stage and annual lifecycle are major factors enabling survival of E. radicosa in warm waters near tropical regions along the Japanese coast.  相似文献   

17.
海洋酸化和海洋变暖是当下及未来海洋生物及其依存生态系统面临的主要环境压力和生态问题。当前,海洋生物早期发育气候变化生物学的研究主要集中于海洋酸化的影响,为了更好地探究海洋气候变化对海洋生物的影响,有必要研究海洋酸化和变暖联合作用下海洋生物的生态响应。以受精后24天的刺参稚参为研究对象,通过模拟当前和本世纪末海洋环境,观察海水酸化和升温对刺参稚参在体色发育关键时期生长、发育及体色变化的影响。实验设置对照组(大连近海水温,pCO2 400 mg·kg-1)、升温组(对照组水温+2℃,pCO2 400 mg·kg-1)、酸化组(对照组水温,pCO2 1000 mg·kg-1)、酸化升温组(对照组水温+2℃,pCO2 1000 mg·kg-1)。结果表明:温度升高2℃能够显著提高稚参发育速率,体色变化加快; pH值降低0.23个单位显著延迟稚参生长,体色变化减缓,个体间体重差异变大;升温2℃能抵消pH降低0.23个单位对...  相似文献   

18.
Seaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf‐forming seaweeds.  相似文献   

19.
We studied the depth distribution and production of kelp along the Greenland coast spanning Arctic to sub‐Arctic conditions from 78 ºN to 64 ºN. This covers a wide range of sea ice conditions and water temperatures, with those presently realized in the south likely to move northwards in a warmer future. Kelp forests occurred along the entire latitudinal range, and their depth extension and production increased southwards presumably in response to longer annual ice‐free periods and higher water temperature. The depth limit of 10% kelp cover was 9–14 m at the northernmost sites (77–78 ºN) with only 94–133 ice‐free days per year, but extended to depths of 21–33 m further south (73 ºN–64 ºN) where >160 days per year were ice‐free, and annual production of Saccharina longicruris and S. latissima, measured as the size of the annual blade, ranged up to sevenfold among sites. The duration of the open‐water period, which integrates light and temperature conditions on an annual basis, was the best predictor (relative to summer water temperature) of kelp production along the latitude gradient, explaining up to 92% of the variation in depth extension and 80% of the variation in kelp production. In a decadal time series from a high Arctic site (74 ºN), inter‐annual variation in sea ice cover also explained a major part (up to 47%) of the variation in kelp production. Both spatial and temporal data sets thereby support the prediction that northern kelps will play a larger role in the coastal marine ecosystem in a warmer future as the length of the open‐water period increases. As kelps increase carbon‐flow and habitat diversity, an expansion of kelp forests may exert cascading effects on the coastal Arctic ecosystem.  相似文献   

20.
Low oxygen zones in coastal and open ocean ecosystems have expanded in recent decades, a trend that will accelerate with climatic warming. There is growing recognition that low oxygen regions of the ocean are also acidified, a condition that will intensify with rising levels of atmospheric CO2. Presently, however, the concurrent effects of low oxygen and acidification on marine organisms are largely unknown, as most prior studies of marine hypoxia have not considered pH levels. We experimentally assessed the consequences of hypoxic and acidified water for early life stage bivalves (bay scallops, Argopecten irradians, and hard clams, Mercenaria mercenaria), marine organisms of significant economic and ecological value and sensitive to climate change. In larval scallops, experimental and naturally-occurring acidification (pH, total scale  = 7.4–7.6) reduced survivorship (by >50%), low oxygen (30–50 µM) inhibited growth and metamorphosis (by >50%), and the two stressors combined produced additively negative outcomes. In early life stage clams, however, hypoxic waters led to 30% higher mortality, while acidified waters significantly reduced growth (by 60%). Later stage clams were resistant to hypoxia or acidification separately but experienced significantly (40%) reduced growth rates when exposed to both conditions simultaneously. Collectively, these findings demonstrate that the consequences of low oxygen and acidification for early life stage bivalves, and likely other marine organisms, are more severe than would be predicted by either individual stressor and thus must be considered together when assessing how ocean animals respond to these conditions both today and under future climate change scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号