首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5+ cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits.  相似文献   

2.
The ERCC1 gene is essential for the repair of UV-induced DNA damage. Unlike most genes in the nucleotide excision repair (NER) pathway, ERCC1 is also involved in recombinational repair. Perhaps for this reason, ERCC1 knockout mice are not a model for the human NER deficiency disorder, xeroderma pigmentosum. Instead, ERCC1 null mice are severely runted and die before weaning from liver failure with accelerated hepatocyte polyploidy that is more reminiscent of a premature ageing disorder. To permit study of the role of ERCC1 in other tissues we have corrected the liver ERCC1 deficiency with a transgene under the control of a liver-specific promoter. The transgene alleviated runting and extended the lifespan. The elevated level of oxidative DNA damage and premature liver polyploidy were reversed and liver function was corrected. A widespread mitochondrial dysfunction was identified and an essential role for ERCC1 in the kidney was also revealed with transgene-containing ERCC1-deficient animals going on to die of renal failure. The nuclei of kidney proximal tubule cells became polyploid in a similar way to the premature liver polyploidy observed in younger ERCC1-deficient animals. We believe that this is a response to the accumulation of endogenous DNA damage in these particularly susceptible tissues which cannot be repaired in ERCC1-deficient animals.  相似文献   

3.
Differently from some lower vertebrates, which can completely regenerate their heart, in higher vertebrates cardiac injury generally leads to progressive failure. Induction of cycle re-entry in terminally differentiated cardiomyocytes and stem-cell transplantation are strategies to increase the regenerative potential of the heart. As experimental and clinical studies progress, demonstrating that adult stem-cell administration has a favorable impact on myocardial function, the identification of cardiac stem cells suggests that some endogenous repair mechanisms actually exist in the mammalian heart. However, a deeper understanding of the mechanism that drives cardiomyocyte proliferation and stem-cell-mediated cardiac repair is required to translate such strategies into effective therapies.  相似文献   

4.
Persistence of Trypanosoma cruzi is associated with damage to the heart, which is a characteristic of Chagas disease. In this article, we discuss recently identified mechanisms of aberrant T-cell activation that are responsible for persistence of T. cruzi and cardiac injury. Among them, apoptosis of host cells drives T. cruzi replication in macrophages and is present in cardiac inflammation. It is proposed that phagocytic removal of infected apoptotic cardiomyocytes, combined with signaling through innate immune receptors, is required to initiate immune responses that damage the heart.  相似文献   

5.
ERCC1 (excision repair cross complementing‐group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross‐link repair. Ercc1?/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1?/Δ mice display combined features of human progeroid and cancer‐prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1?/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1?/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1?/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence‐associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor‐suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1‐deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1?/Δ mouse skin, where the apoptotic cells are localized, compared to age‐matched wild‐type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1‐depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health‐ or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.  相似文献   

6.
Paraquat (PQ) promotes cell senescence in brain tissue, which contributes to Parkinson's disease. Furthermore, PQ induces heart failure and oxidative damage, but it remains unknown whether and how PQ induces cardiac aging. Here, we demonstrate that PQ induces phenotypes associated with senescence of cardiomyocyte cell lines and results in cardiac aging‐associated phenotypes including cardiac remodeling and dysfunction in vivo. Moreover, PQ inhibits the activation of Forkhead box O3 (FoxO3), an important longevity factor, both in vitro and in vivo. We found that PQ‐induced senescence phenotypes, including proliferation inhibition, apoptosis, senescence‐associated β‐galactosidase activity, and p16INK4a expression, were significantly enhanced by FoxO3 deficiency in cardiomyocytes. Notably, PQ‐induced cardiac remolding, apoptosis, oxidative damage, and p16INK4a expression in hearts were exacerbated by FoxO3 deficiency. In addition, both in vitro deficiency and in vivo deficiency of FoxO3 greatly suppressed the activation of antioxidant enzymes including catalase (CAT) and superoxide dismutase 2 (SOD2) in the presence of PQ, which was accompanied by attenuation in cardiac function. The direct in vivo binding of FoxO3 to the promoters of the Cat and Sod2 genes in the heart was verified by chromatin immunoprecipitation (ChIP). Functionally, overexpression of Cat or Sod2 alleviated the PQ‐induced senescence phenotypes in FoxO3‐deficient cardiomyocyte cell lines. Overexpression of FoxO3 and CAT in hearts greatly suppressed the PQ‐induced heart injury and phenotypes associated with aging. Collectively, these results suggest that FoxO3 protects the heart against an aging‐associated decline in cardiac function in mice exposed to PQ, at least in part by upregulating the expression of antioxidant enzymes and suppressing oxidative stress.  相似文献   

7.
Although ultraviolet radiation (UV) exposure from indoor tanning has been linked to an increased risk of melanoma, the role of DNA repair genes in this process is unknown. We evaluated the association of 92 single nucleotide polymorphisms (SNPs) in 20 DNA repair genes with the risk of melanoma and indoor tanning among 929 patients with melanoma and 817 controls from the Minnesota Skin Health Study. Significant associations with melanoma risk were identified for SNPs in ERCC4, ERCC6, RFC1, XPC, MGMT, and FBRSL1 genes; with a cutoff of P < 0.05. ERCC6 and FBRSL1 gene variants and haplotypes interacted with indoor tanning. However, none of the 92 SNPs tested met the correction criteria for multiple comparisons. This study, based on an a priori interest in investigating the role of DNA repair capacity using variants in base excision and nucleotide excision repair, identified several genes that may play a role in resolving UV‐induced DNA damage.  相似文献   

8.
Mutations in human homologues of the bacterial RecQ helicase cause diseases leading to cancer predisposition and/or shortened lifespan (Werner, Bloom, and Rothmund–Thomson syndromes). The budding yeast Saccharomyces cerevisiae has one RecQ helicase, Sgs1, which functions with Top3 and Rmi1 in DNA repair. Here, we report separation‐of‐function alleles of SGS1 that suppress the slow growth of top3Δ and rmi1Δ cells similar to an SGS1 deletion, but are resistant to DNA damage similar to wild‐type SGS1. In one allele, the second acidic region is deleted, and in the other, only a single aspartic acid residue 664 is deleted. sgs1‐D664Δ, unlike sgs1Δ, neither disrupts DNA recombination nor has synthetic growth defects when combined with DNA repair mutants. However, during S phase, it accumulates replication‐associated X‐shaped structures at damaged replication forks. Furthermore, fluorescent microscopy reveals that the sgs1‐D664Δ allele exhibits increased spontaneous RPA foci, suggesting that the persistent X‐structures may contain single‐stranded DNA. Taken together, these results suggest that the Sgs1 function in repair of DNA replication intermediates can be uncoupled from its role in homologous recombinational repair.  相似文献   

9.
The effect of simulated microgravity on DNA damage and apoptosis is still controversial. The objective of this study was to test whether simulated microgravity conditions affect the expression of genes for DNA repair and apoptosis. To achieve this objective, human lymphocyte cells were grown in a NASA‐developed rotating wall vessel (RWV) bioreactor that simulates microgravity. The same cell line was grown in parallel under normal gravitational conditions in culture flasks. The effect of microgravity on the expression of genes was measured by quantitative real‐time PCR while DNA damage was examined by comet assay. The result of this study revealed that exposure to simulated microgravity condition decreases the expression of DNA repair genes. Mismatch repair (MMR) class of DNA repair pathway were more susceptible to microgravity condition‐induced gene expression changes than base excision repair (BER) and nucleotide excision repair (NER) class of DNA repair genes. Downregulation of genes involved in cell proliferation (CyclinD1 and PCNA) and apoptosis (Bax) was also observed. Microgravity‐induced changes in the expression of some of these genes were further verified at the protein level by Western blot analysis. The findings of this study suggest that microgravity may induce alterations in the expression of these DNA repair genes resulting in accumulation of DNA damage. Reduced expression of cell‐cycle genes suggests that microgravity may cause a reduction in cell growth. Downregulation of pro‐apoptotic genes further suggests that extended exposure to microgravity may result in a reduction in the cells' ability to undergo apoptosis. Any resistance to apoptosis seen in cells with damaged DNA may eventually lead to malignant transformation of those cells. J. Cell. Biochem. 107: 723–731, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O6-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm−/− mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.  相似文献   

11.
Background  Glycosylphosphatidylinositol (GPI) purified from Plasmodium falciparum has been shown to play an important role as a toxin in the pathology of malaria. Previous studies demonstrated cardiac involvement in patients suffering from severe malaria due to P. falciparum. Therefore, we tested the hypothesis that GPI induces apoptosis in cardiomyocytes. Methods and results  By using TUNEL and caspase activity assays, we provided evidence for apoptosis induction in cardiomyocytes by P. falciparum GPI after 48 h of incubation. A similar result was obtained in heart cells of mice 48 h after in vivo injection of GPI. Gene expression analyses in GPI-treated cardiomyocytes showed an up-regulation of apoptotic genes (apaf-1, bax) and of a myocardial damage marker bnp (brain natriuretic peptide), while a down-regulation was observed for the anti-apoptotic gene bcl-2 and for the heat shock protein hsp70. In spite of inflammatory cytokine gene up-regulation by GPI, co-culture with peripheral mononuclear cells (PMNCs) did not change the results obtained with cardiomyocytes alone, indicating a direct effect of GPI on cardiac myocytes. Co-culture with non-myocytic cardiac cells (NMCCs) resulted in up-regulation of Hsp70 and Bcl-2 genes in GPI-treated cardiomyocytes but without repercussion on the apoptosis level. A malaria-infected patient, presenting fulminant heart failure showed typical signs of cardiac myocyte apoptosis demonstrating the clinical relevance of toxin induced heart damage for the lethality of malaria. Our studies performed in vitro and in mice suggest that the GPI could be responsible for cardiomyocyte apoptosis that occurred in this patient. Conclusion   Plasmodium falciparum GPI-induced apoptosis might participate in the lethality of malaria.
Volker RuppertEmail:
  相似文献   

12.
Senescent cells accumulate with age in vertebrates and promote aging largely through their senescence‐associated secretory phenotype (SASP). Many types of stress induce senescence, including genotoxic stress. ERCC1‐XPF is a DNA repair endonuclease required for multiple DNA repair mechanisms that protect the nuclear genome. Humans or mice with reduced expression of this enzyme age rapidly due to increased levels of spontaneous, genotoxic stress. Here, we asked whether this corresponds to an increased level of senescent cells. p16Ink4a and p21Cip1 mRNA were increased ~15‐fold in peripheral lymphocytes from 4‐ to 5‐month‐old Ercc1?/? and 2.5‐year‐old wild‐type (WT) mice, suggesting that these animals exhibit a similar biological age. p16Ink4a and p21Cip1 mRNA were elevated in 10 of 13 tissues analyzed from 4‐ to 5‐month‐old Ercc1?/? mice, indicating where endogenous DNA damage drives senescence in vivo. Aged WT mice had similar increases of p16Ink4a and p21Cip1 mRNA in the same 10 tissues as the mutant mice. Senescence‐associated β–galactosidase activity and p21Cip1 protein also were increased in tissues of the progeroid and aged mice, while Lamin B1 mRNA and protein levels were diminished. In Ercc1?/Δ mice with a p16Ink4a luciferase reporter, bioluminescence rose steadily with age, particularly in lung, thymus, and pancreas. These data illustrate where senescence occurs with natural and accelerated aging in mice and the relative extent of senescence among tissues. Interestingly, senescence was greater in male mice until the end of life. The similarities between Ercc1?/? and aged WT mice support the conclusion that the DNA repair‐deficient mice accurately model the age‐related accumulation of senescent cells, albeit six‐times faster.  相似文献   

13.
The role of apoptosis in cardiac morphogenesis has not been directly tested. Cardiomyocyte apoptosis is prevalent during the remodeling of the embryonic chicken cardiac outflow tract (OFT) in the transition from a single to a dual circulation. We tested the hypothesis that OFT cardiomyocyte apoptosis drives the shortening and rotation of the embryonic cardiac OFT and is required to achieve the mature ventriculo-arterial configuration. Chick embryos were treated with the peptide Caspase inhibitors zVAD-fmk or DEVD-cho at HH stages 15-20 (looped heart). Morphology of control and experimental embryos was assessed at HH stage 35, at which time the control hearts have developed a dual circulation. Infection of the hearts with a recombinant adenovirus expressing green fluorescent protein was used to follow the fate of the OFT cardiomyocytes. Affected embryos displayed abnormal persistence of a long infundibulum (OFT myocardial remnant) beneath the great vessels, indicating failure of OFT shortening. In some instances, the infundibulum connected both great vessels to the right ventricle in a side-by-side arrangement with transposition of the aorta, indicating a failure of rotation of the OFT, and modeling human congenital double outlet right ventricle. Defects were also observed at other sites in the heart where apoptosis is prevalent, such as in the formation of the cardiac valves and trabeculae. To more specifically target the apoptosis of the OFT cardiomyocytes, recombinant adenovirus was used to express the X-linked inhibitor of apoptosis protein in these cells. This resulted in an effect on outflow tract shortening and rotation similar to that of the peptide inhibitors, while the effects on the other cardiac structures were not observed. These results demonstrate that elimination of OFT cardiomyocytes by apoptosis is necessary for the proper formation of the ventriculo-arterial connections, and suggest apoptosis as a potential target of teratogens and genetic defects that are associated with congenital human conal heart defects.  相似文献   

14.
ERCC1 (excision repair cross-complementation group 1) plays essential roles in the removal of DNA intrastrand crosslinks by nucleotide excision repair, and that of DNA interstrand crosslinks by the Fanconi anemia (FA) pathway and homology-directed repair processes (HDR). The function of ERCC1 thus impacts on the DNA damage response (DDR), particularly in anticancer therapy when DNA damaging agents are employed. ERCC1 expression has been proposed as a predictive biomarker of the response to platinum-based therapy. However, the assessment of ERCC1 expression in clinical samples is complicated by the existence of 4 functionally distinct protein isoforms, which differently impact on DDR. Here, we explored the functional competence of each ERCC1 protein isoform and obtained evidence that the 202 isoform is the sole one endowed with ERCC1 activity in DNA repair pathways. The ERCC1 isoform 202 interacts with RPA, XPA, and XPF, and XPF stability requires expression of the ERCC1 202 isoform (but none of the 3 others). ERCC1-deficient non-small cell lung cancer cells show abnormal mitosis, a phenotype reminiscent of the FA phenotype that can be rescued by isoform 202 only. Finally, we could not observe any dominant-negative interaction between ERCC1 isoforms. These data suggest that the selective assessment of the ERCC1 isoform 202 in clinical samples should accurately reflect the DDR-related activity of the gene and hence constitute a useful biomarker for customizing anticancer therapies.  相似文献   

15.
16.
p53 is required for DNA damage‐induced apoptosis, which is central to its function as a tumour suppressor. Here, we show that the apoptotic defect of p53‐deficient cells is nearly completely rescued by inactivation of any of the three subunits of the DNA repair holoenzyme DNA‐dependent protein kinase (DNA‐PK). Intestinal crypt cells from p53 nullizygous mice were resistant to radiation‐induced apoptosis, whereas apoptosis in DNA‐PKcs/p53, Ku80/p53 and Ku70/p53 double‐null mice was quantitatively equivalent to that seen in wild‐type mice. This p53‐independent apoptotic response was specific to the loss of DNA‐PK, as it was not seen in ligase IV (Lig4)/p53 or ataxia telangiectasia mutated (Atm)/p53 double‐null mice. Furthermore, it was associated with an increase in phospho‐checkpoint kinase 2 (CHK2), and cleaved caspases 3 and 9, the latter indicating engagement of the intrinsic apoptotic pathway. This shows that there are two separate, but equally effective, apoptotic responses to DNA damage: one is p53 dependent and the other, engaged in the absence of DNA‐PK, does not require p53.  相似文献   

17.

Background

Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage caused by BPDE is normally repaired by Nucleotide Excision Repair (NER), of which ERCC1 and ERCC2/XPD exert an indispensable role. Genetic variations in ERCC1 and ERCC2 have been related to DNA repair efficiency. In this study we used lymphocytes from healthy individuals to show that polymorphisms in ERCC1 and ERCC2 are directly associated with decreased DNA repair efficiency.

Methods

ERCC1 (rs3212986 and rs11615) and ERCC2 (rs13181, rs1799793 and rs238406) were genotyped in 818 healthy Han individuals from the northeast of China. BPDE induced DNA adducts in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 282 randomly selected participants. The effect of ERCC1 rs3212986 and ERCC2 rs238406 on DNA damage caused by B[a]P was assessed with a modified comet assay.

Results

We found that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 were associated with the high levels of BPDE-DNA adducts. Especially ERCC1 rs3212986 A-allele variant was significantly associated with the high BPDE-DNA adducts. Haplotype analysis showed that the ERCC1 haplotype AC (OR = 2.36, 95% CI = 1.84–2.97), ERCC2 haplotype AGA (OR = 1.51, 95% CI = 1.06–2.15) and haplotype block AGAAC (OR = 5.28, 95% CI = 2.95–9.43), AGCAC (OR = 1.35 95% CI = 1.13–1.60) were linked with high BPDE-DNA adducts. In addition, we found that the combined minor alleles of ERCC1 rs3212986 and ERCC2 rs238406 were associated with a reduced DNA repair capacity.

Conclusions

Our results suggest that the variant genotypes of ERCC1 rs3212986 and ERCC2 rs238406 are associated with decreased repair efficiency of BPDE induced DNA damage, and may be predictive for an individual’s DNA repair capacity in response to environmental carcinogens.  相似文献   

18.
ERCC1-XPF is a heterodimeric, structure-specific endonuclease that cleaves single-stranded/double-stranded DNA junctions and has roles in nucleotide excision repair (NER), interstrand crosslink (ICL) repair, homologous recombination, and possibly other pathways. In NER, ERCC1-XPF is recruited to DNA lesions by interaction with XPA and incises the DNA 5' to the lesion. We studied the role of the four C-terminal DNA binding domains in mediating NER activity and cleavage of model substrates. We found that mutations in the helix-hairpin-helix domain of ERCC1 and the nuclease domain of XPF abolished cleavage activity on model substrates. Interestingly, mutations in multiple DNA binding domains were needed to significantly diminish NER activity in vitro and in vivo, suggesting that interactions with proteins in the NER incision complex can compensate for some defects in DNA binding. Mutations in DNA binding domains of ERCC1-XPF render cells more sensitive to the crosslinking agent mitomycin C than to ultraviolet radiation, suggesting that the ICL repair function of ERCC1-XPF requires tighter substrate binding than NER. Our studies show that multiple domains of ERCC1-XPF contribute to substrate binding, and are consistent with models of NER suggesting that multiple weak protein-DNA and protein-protein interactions drive progression through the pathway. Our findings are discussed in the context of structural studies of individual domains of ERCC1-XPF and of its role in multiple DNA repair pathways.  相似文献   

19.
20.
The tumor suppressor breast cancer susceptibility gene 2 (BRCA2) plays an important role in the repair of DNA damage, and loss of BRCA2 predisposes carriers to breast and ovarian cancers. Doxorubicin (DOX) remains the cornerstone of chemotherapy in such individuals. However, it is often associated with cardiac failure, which once manifests carries a poor prognosis. Because BRCA2 regulates genome-wide stability and facilitates DNA damage repair, we hypothesized that loss of BRCA2 may increase susceptibility to DOX-induced cardiac failure. To this aim, we generated cardiomyocyte-specific BRCA2 knock-out (CM-BRCA2(-/-)) mice using the Cre-loxP technology and evaluated their basal and post-DOX treatment phenotypes. Although CM-BRCA2(-/-) mice exhibited no basal cardiac phenotype, DOX treatment resulted in markedly greater cardiac dysfunction and mortality in CM-BRCA2(-/-) mice compared with control mice. Apoptosis in left ventricular (LV) sections from CM-BRCA2(-/-) mice compared with that in corresponding sections from wild-type (WT) littermate controls was also significantly enhanced after DOX treatment. Microscopic examination of LV sections from DOX-treated CM-BRCA2(-/-) mice revealed a greater number of DNA double-stranded breaks and the absence of RAD51 focus formation, an essential marker of double-stranded break repair. The levels of p53 and the p53-related proapoptotic proteins p53-up-regulated modulator of apoptosis (PUMA) and Bax were significantly increased in samples from CM-BRCA2(-/-) mice. This corresponded with increased Bax to Bcl-2 ratios and elevated cytochrome c release in the LV sections of DOX-treated CM-BRCA2(-/-) mice. Taken together, these data suggest a critical and previously unrecognized role of BRCA2 as a gatekeeper of DOX-induced cardiomyocyte apoptosis and susceptibility to overt cardiac failure. Pharmacogenomic studies evaluating cardiac function in BRCA2 mutation carriers treated with doxorubicin are encouraged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号