首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There exist a number of key macroecological patterns whose ubiquity suggests that the spatio‐temporal structure of ecological communities is governed by some universal mechanisms. The nature of these mechanisms, however, remains poorly understood. Here, we probe spatio‐temporal patterns in species richness and community composition using a simple metacommunity assembly model. Despite making no a priori assumptions regarding biotic spatial structure or the distribution of biomass across species, model metacommunities self‐organise to reproduce well‐documented patterns including characteristic species abundance distributions, range size distributions and species area relations. Also in agreement with observations, species richness in our model attains an equilibrium despite continuous species turnover. Crucially, it is in the neighbourhood of the equilibrium that we observe the emergence of these key macroecological patterns. Biodiversity equilibria in models occur due to the onset of ecological structural instability, a population‐dynamical mechanism. This strongly suggests a causal link between local community processes and macroecological phenomena.  相似文献   

2.
Aim Community ecologists often compare assemblages. Alternatively, one may compare species distributions among assemblages for macroecological comparisons of species niche traits and dispersal abilities, which are consistent with metacommunity theory and a regional community concept. The aim of this meta‐analysis is to use regressions of ranked species occupancy curves (RSOCs) among diverse metacommunities and to consider the common patterns observed. Location Diverse data sets from four continents are analysed. Methods Six regression models were translated from traditional occupancy frequency distributions (OFDs) and are distributed among four equation families. Each regression model was fitted to each of 24 data sets and compared using the Akaike information criterion. The analysed data sets encompass a wide range of spatial scales (5 cm–50 km grain, 2–7000 km extent), study scales (11–590 species, 6–5114 sites) and taxa. Observed RSOC regressions were tested for the differences in scale and taxa. Results Three RSOC models within two equation families (exponential and sigmoidal) are required to describe the very different data sets. This result is generally consistent with OFD research, but unlike OFD‐based expectations the simple RSOC patterns are not related to spatial scale or other factors. Species occupancy in diverse metacommunities is efficiently summarized with RSOCs, and multi‐model inference reliably distinguishes among alternative RSOCs. Main conclusions RSOCs are simple to generate and analyse and clearly identified surprisingly similar patterns among very different metacommunities. Species‐specific hypotheses (e.g. niche‐based factors and dispersal abilities) that depend on spatial scale may not translate to diverse metacommunities that sample regional communities. A novel set of three metacommunity succession and disturbance hypotheses potentially explain RSOC patterns and should be tested in subsequent research. RSOCs are an operational approach to the regional community concept and should be useful in macroecology and metacommunity ecology.  相似文献   

3.
  1. Aquatic ecosystems are biodiversity hot spots across many landscapes; therefore, the degradation of these habitats can lead to decreases in biodiversity across multiple scales. Salinisation is a global issue that threatens freshwater ecosystems by reducing water quality and local biodiversity. The effects of salinity on local processes have been studied extensively; however, the effects of salinisation or similar environmental stressors within a metacommunity (a dispersal network of several distinct communities) have not been explored.
  2. We tested how the spatial heterogeneity and the environmental contrast between freshwater and saline habitat patches influenced cladoceran biodiversity and species composition at local and regional scales in a metacommunity mesocosm experiment. We defined spatial heterogeneity as the proportion of freshwater to saltwater patches within the metacommunity, ranging from a freshwater-dominated metacommunity to a saltwater-dominated metacommunity. Environmental contrast was defined as the environmental distance between habitat patches along the salinity gradient in which low-contrast metacommunities consisted of freshwater and low-salinity patches and high-contrast metacommunities consisted of freshwater and high-salinity patches.
  3. We hypothesised that the α-richness of freshwater patches and metacommunity γ-richness would decrease as freshwater patches became less abundant along the spatial heterogeneity gradient in both low- and high-contrast metacommunities, because there would be fewer freshwater patches that could serve as source populations for declining populations. We hypothesised that low-contrast metacommunities would support more species across the spatial heterogeneity gradient than high-contrast metacommunities, because, via dispersal, low-salinity patches can support halotolerant freshwater species that can mitigate population declines in neighbouring freshwater patches, whereas` high-salinity patches will mostly support halophilic species, providing fewer potential colonisers to freshwater patches.
  4. We found that α-richness of freshwater mesocosms and metacommunity γ-richness declined in saline-dominated metacommunities regardless of the environmental contrast between the freshwater and saline mesocosms. We found that environmental contrast influenced freshwater and saline community composition in low-contrast metacommunities by increasing the abundances of species that could tolerate low-salinity environments through dispersal, whereas freshwater and high-salinity communities showed limited interactions through dispersal.
  5. Freshwater mesocosms had a disproportionate effect on the local and regional biodiversity in these experimental metacommunities, indicating that habitat identity may be more important than habitat diversity for maintaining biodiversity in some metacommunities. This study further emphasises the importance in maintaining multiple species-rich habitat patches across landscapes, particularly those experiencing landscape-wide habitat degradation.
  相似文献   

4.
5.
1. Occupancy frequency distributions (OFDs) are one means to study species distribution patterns, allowing the delineation of rare and common species. Very few studies have deconstructed entire assemblages by ecological or biological characteristics and subsequently examined OFDs in subgroups of species. 2. The effect of deconstruction of entire assemblages by niche breadth, niche position or body size classes on OFDs in stream insects in three drainage basins was examined. It was hypothesized that OFDs should not vary between different drainage basins, but they should be affected by deconstruction into different niche breadth, niche position or body size classes. 3. The OFDs were typically strongly right‐skewed in all drainage basins. The set of small‐sized species was strongly dominated by rare species, whereas the importance of rare species decreased with increasing body size. Further, while the OFDs of sets of species with marginal niche position or small niche breadth were strongly dominated by rare species, those of species with non‐marginal niche position or large niche breadth showed highly variable degrees of occupancy. The OFDs of non‐marginal species were even uniform in the entire data and one drainage basin, providing partial support to the a priori hypothesis. 4. Niche‐based explanations are likely to account for occupancies of marginal and small‐niched species, whereas the distributions of non‐marginal and broad‐niched species may be not only affected by niche‐based mechanisms but also by spatial dynamics. Deconstruction of OFDs by ecological and biological traits thus showed that the patterns may vary between different subgroups of species.  相似文献   

6.
Aims We have two aims: (1) to examine the relationship between local population persistence, local abundance and regional occupancy of stream diatoms and (2) to characterize the form of the species–occupancy frequency distribution of stream diatoms. Location Boreal streams in Finland. There were three spatial extents: (1) across ecoregions in Finland, (2) within ecoregions in Finland, and (3) within a single drainage system in southern Finland. Methods Diatoms were sampled from stones (epilithon), sediment (epipelon) and aquatic plants (epiphyton) in streams using standardized sampling methods. To assess population persistence, diatom sampling was conducted monthly at four stream sites from June to October. The relationships between local population persistence, local abundance and regional occupancy were examined using correlation analyses. Results There was a significant positive relationship between local persistence and abundance of diatoms in epilithon, epipelon and epiphyton. Furthermore, local abundance and regional occupancy showed a significant positive relationship at multiple spatial extents; that is, across ecoregions, within ecoregions and within a drainage system. The relationships between occupancy and abundance did not differ appreciably among impacted and near pristine‐reference sites. The occupancy–frequency distribution was characterized by a large number of satellite species which occurred at only a few sites, whereas core species that occurred at most sites were virtually absent. Main conclusions The positive relationship between local population persistence and abundance suggested that a high local abundance may prevent local extinction or that high persistence is facilitated by a high local cell density. High local persistence and local abundance may also positively affect the degree of regional occupancy in stream diatoms. The results further showed that anthropogenic effects were probably too weak to bias the relationship between occupancy and abundance, or that the effects have already modified the distribution patterns of stream diatoms. The small number of core species in the species–occupancy frequency distribution suggested that the regional distribution patterns of stream diatoms, or perhaps unicellular microbial organisms in general, may not be fundamentally different from those described previously for multicellular organisms, mainly in terrestrial environments, although average global range sizes may differ sharply between these two broad groups of organisms.  相似文献   

7.
Dispersal is a major factor regulating the number of coexisting species, but the relationship between species diversity and ecosystem processes has mainly been analysed for communities closed to dispersal. We experimentally investigated how initial local diversity and dispersal frequency affect local diversity and biomass production in open benthic microalgal metacommunities. Final local species richness and local biomass production were strongly influenced by dispersal frequency but not by initial local diversity. Both final local richness and final local biomass showed a hump-shaped pattern with increasing dispersal frequency, with a maximum at intermediate dispersal frequencies. Consequently, final local biomass increased linearly with increasing final richness. We conclude that the general relationship between richness and ecosystem functioning remains valid in open systems, but the maintenance of ecosystem processes significantly depends on the effects of dispersal on species richness and local interactions.  相似文献   

8.
Species distribution models are the tool of choice for large-scale population monitoring, environmental association studies and predictions of range shifts under future environmental conditions. Available data and familiarity of the tools rather than the underlying population dynamics often dictate the choice of specific method – especially for the case of presence–absence data. Yet, for predictive purposes, the relationship between occupancy and abundance embodied in the models should reflect the actual population dynamics of the modelled species. To understand the relationship of occupancy and abundance in a heterogeneous landscape at the scale of local populations, we built a spatio-temporal regression model of populations of the Glanville fritillary butterfly Melitaea cinxia in a Baltic Sea archipelago. Our data comprised nineteen years of habitat surveys and snapshot data of land use in the region. We used variance partitioning to quantify relative contributions of land use, habitat quality and metapopulation covariates. The model revealed a consistent and positive, but noisy relationship between average occupancy and mean abundance in local populations. Patterns of abundance were highly variable across years, with large uncorrelated random variation and strong local population stochasticity. In contrast, the spatio-temporal random effect, habitat quality, population connectivity and patch size explained variation in occupancy, vindicating metapopulation theory as the basis for modelling occupancy patterns in fragmented landscapes. Previous abundance was an important predictor in the occupancy model, which points to a spillover of abundance into occupancy dynamics. While occupancy models can successfully model large-scale population structure and average occupancy, extinction probability estimates for local populations derived from occupancy-only models are overconfident, as extinction risk is dependent on actual, not average, abundance.  相似文献   

9.
Although the maintenance of diversity of living systems is critical for ecosystem functioning, the accelerating pace of global change is threatening its preservation. Standardized methods for biodiversity assessment and monitoring are needed. Species diversity is one of the most widely adopted metrics for assessing patterns and processes of biodiversity, at both ecological and biogeographic scales. However, those perspectives differ because of the types of data that can be feasibly collected, resulting in differences in the questions that can be addressed. Despite a theoretical consensus on diversity metrics, standardized methods for its measurement are lacking, especially at the scales needed to monitor biodiversity for conservation and management purposes. We review the conceptual framework for species diversity, examine common metrics, and explore their use for biodiversity conservation and management. Key differences in diversity measures at ecological and biogeographic scales are the completeness of species lists and the ability to include information on species abundances. We analyse the major pitfalls and problems with quantitative measurement of species diversity, look at the use of weighting measures by phylogenetic distance, discuss potential solutions and propose a research agenda to solve the major existing problems.  相似文献   

10.
Distribution of abundance across the range in eastern North American trees   总被引:2,自引:0,他引:2  
Aim  We analysed spatial datasets of abundance across the entirety, or near entirety, of the geographical ranges of 134 tree species to test macroecological hypotheses concerning the distribution of abundance across geographical ranges.
Location  Our abundance estimates came via the USDA Forest Service Forest Inventory and Analysis Eastwide Database, which contains data for 134 eastern North American tree species.
Methods  We extracted measures of range size and the spatial location of abundance relative to position in the range for each species to test four hypotheses: (a) species occur in low abundance throughout most of their geographical range; (b) there is a positive interspecific relationship between abundance and range size; (c) species are more abundant in the centre of their range; and (d) there is a bimodal distribution of spatial autocorrelation in abundance across a species range.
Results  Our results demonstrate that (a) most species (85%) are abundant somewhere in their geographical range; (b) species achieving relatively high abundance tend to have larger range sizes; (c) the widely held assumption that species exhibit an 'abundant-centre distribution' is not well supported for the majority of species; we suggest 'abundant-core' as a more suitable term; and (d) there is no evidence of a bimodal distribution of spatial autocorrelation in abundance.  
Main Conclusions 

For many tree species, high abundance can be achieved at any position in the range, though suitable sites are found with less frequency towards range edges. Competitive relationships may be involved in the distribution of abundance across tree ranges and species with larger ranges (and possibly broader niches) may be affected more by biotic interactions than smaller ranging species.  相似文献   

11.
12.
Urban biodiversity in local newspapers: a historical perspective   总被引:3,自引:1,他引:2  
Due to rapid urbanization the conservation and values of urban wildlife are becoming increasingly important study objects. Unfortunately, the lack of historical data makes it difficult to assess the effects of long-term urban land-use changes and human attitudes on local biodiversity. In this paper we show that old newspapers may in some cases provide useful historical data on both urban wildlife and local attitudes towards it. In the city of Turku, southwest Finland, the leading newspaper published 316 observations or reports on local urban mammals, birds and reptiles in 1890–1920, and in addition to these a lot of information on contemporary attitudes towards urban wildlife. At least 12 species of noncaptive mammals, 32 species of birds, and three reptile species were documented in newspapers. The newspaper data seem fairly reliable, and provide valuable information on the development of urban biodiversity. In the study period animals visiting urban areas were often persecuted, in which both adults and children (mainly schoolboys) participated actively. Birds were persecuted less frequently than mammals or reptiles. Some bird species, especially 'song-birds', were actively supported by winter-feeding and by constructing nest-boxes. According to newspapers local people were interested in local biodiversity, especially on phenological events, and benefited from it by getting esthetic pleasure, pet animals, and information on seasonal changes.  相似文献   

13.
1. The positive abundance-occupancy and abundance-variance relationships are two of the most widely documented patterns in population and community ecology. 2. Recently, a general model has been proposed linking the mean abundance, the spatial variance in abundance, and the occupancy of species. A striking feature of this model is that it consists explicitly of the three variables abundance, variance and occupancy, and no extra parameters are involved. However, little is known about how well the model performs. 3. Here, we show that the abundance-variance-occupancy model fits extremely well to data on the abundance, variance and occupancy of a large number of arthropod species in natural forest patches in the Azores, at three spatial extents, and distinguishing between species of different colonization status. Indeed, virtually all variation about the bivariate abundance-occupancy and abundance-variance relationships is effectively explained by the third missing variable (variance in abundance in the case of the abundance-occupancy relationship, and occupancy in the case of the abundance-variance relationship). 4. Introduced species tend to exhibit lower densities, less spatial variance in these densities, and occupy fewer sites than native and endemic species. None the less, they all lie on the same bivariate abundance-occupancy and abundance-variance, and trivariate abundance-variance-occupancy, relationships. 5. Density, spatial variance in density, and occupancy appear to be all the things one needs to know to describe much of the spatial distribution of species.  相似文献   

14.
  1. Abundance–occupancy (A–O) relationships are widely documented for many organismal groups and regions, and have been used to gain an understanding of regional population and community trends. Monitoring changes in abundance and occupancy over time may be what is required to document changes in conservation status and needs for some species, communities, or areas.
  2. We hypothesize that if there is a higher proportion of declining species in one group of species compared with another (e.g., migratory species vs. permanent residents), then a consequence of that difference will be vastly different abundance–occupancy relationships. If this difference persists through time, then the resulting A–O relationships between the groups will continue to diverge.
  3. For neotropical migrants, short‐distance migrants, and permanent resident birds of North America, we assess the numbers of declining species over 1969–2009. We further test for differences in the A–O relationship across these three groups, and in rates of change in abundance and occupancy separately.
  4. We find significant differences in numbers of declining species across the migratory groups, a significant decline in the A–O relationship for permanent residents, a significant increase for Neotropical migrants, and a nonsignificant decline for short‐distance migrants over the 40 years. Further, abundances are not changing at different rates but occupancies are consistently greater over time for neotropical migrants versus permanent residents, likely driving the changes in A–O relationships observed.
  5. In these analyses, we documented changing A–O trends for different groups of species, over a relatively long time period for ecological studies, one of only a few studies to examine A–O relationships over time. Further, we have shown that a temporally unvarying abundance–occupancy relationship is not universal, and we posit that variability in A–O relationships is due to human impacts on habitats, coupled with variation in species' abilities to respond to human impacts.
  相似文献   

15.
16.
17.
Abstract Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low‐intensity prescribed fire early in the dry season, to reduce the incidence of higher‐intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high‐intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape‐scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time‐since‐fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5‐year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass‐layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire‐sensitive species. This was especially the case for extinction‐prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.  相似文献   

18.
19.
Biodiversity provides support for life, vital provisions, regulating services and has positive cultural impacts. It is therefore important to have accurate methods to measure biodiversity, in order to safeguard it when we discover it to be threatened. For practical reasons, biodiversity is usually measured at fine scales whereas diversity issues (e.g. conservation) interest regional or global scales. Moreover, biodiversity may change across spatial scales. It is therefore a key challenge to be able to translate local information on biodiversity into global patterns. Many databases give no information about the abundances of a species within an area, but only its occurrence in each of the surveyed plots. In this paper, we introduce an analytical framework (implemented in a ready‐to‐use R code) to infer species richness and abundances at large spatial scales in biodiversity‐rich ecosystems when species presence/absence information is available on various scattered samples (i.e. upscaling). This framework is based on the scale‐invariance property of the negative binomial. Our approach allows to infer and link within a unique framework important and well‐known biodiversity patterns of ecological theory, such as the species accumulation curve (SAC) and the relative species abundance (RSA) as well as a new emergent pattern, which is the relative species occupancy (RSO). Our estimates are robust and accurate, as confirmed by tests performed on both in silico‐generated and real forests. We demonstrate the accuracy of our predictions using data from two well‐studied forest stands. Moreover, we compared our results with other popular methods proposed in the literature to infer species richness from presence to absence data and we showed that our framework gives better estimates. It has thus important applications to biodiversity research and conservation practice.  相似文献   

20.
Aim The study of the spatial dynamics of invasive species is a key issue in invasion ecology. While mathematical models are useful for predicting the extent of population expansions, they are not suitable for measuring and characterizing spatial patterns of invasion unless the probability of detection is homogeneous across the distribution range. Here, we apply recently developed statistical approaches incorporating detection uncertainty to characterize the spatial dynamics of an invasive bird species, the Eurasian collared dove (Streptopelia decaocto). Location France. Methods Data on presence/absence of doves were recorded from 1996 to 2004 over 1045 grid cells (28 × 20 km) covering the entire country. Each grid cell included five point counts spaced along a route, which was visited twice a year, allowing for an estimation of detection probability. Each route was assigned to one of six geographical regions. We used robust design occupancy analysis to assess spatial and temporal variation in parameters related to the spatial dynamics of the species. These parameters included occupancy rate, colonization and local extinction probabilities. Our inference approach was based on the selection of the most parsimonious model among competitive models parametrized with conditional probabilities. Results The probability of detecting the presence of doves on a given route was high. However, we found evidence to incorporate detection uncertainty in inference processes about spatial dynamics, since detection probability was neither perfect (i.e. it was < 1), nor constant over space and time. Results showed a clear positive trend in occupancy rate over the study period, increasing from 55% in 1996 to 76% in 2004. In addition, occupancy rate differed among regions (range: 37–79%) and further analysis showed that colonization probability by region was positively related to occupancy rate. Finally, local extinction probability was lower than colonization probability and showed a tendency to decrease over the study period. Main conclusions Our results emphasize the importance of estimating detection probabilities in order to draw proper inferences about the spatial and temporal dynamics of the invasion pattern of the collared dove. In contrast to the perceived spatial dynamics from national atlas surveys, we provide evidence that the range of this species is currently increasing in France. Other results, such as regional specificity in colonization probabilities and time variation in local extinction are consistent with expectations from invasion and metapopulation theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号