首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diarrheal pathogen Vibrio cholerae navigates complex environments using three chemosensory systems and 44–45 chemoreceptors. Chemosensory cluster II modulates chemotaxis, whereas clusters I and III have unknown functions. Ligands have been identified for only five V. cholerae chemoreceptors. Here, we report that the cluster III receptor, VcAer2, binds and responds to O2. VcAer2 is an ortholog of Pseudomonas aeruginosa Aer2 (PaAer2) but differs in that VcAer2 has two, rather than one, N‐terminal PAS domain. We have determined that both PAS1 and PAS2 form homodimers and bind penta‐coordinate b‐type heme via an Eη‐His residue. Heme binding to PAS1 required the entire PAS core, but receptor function also required the N‐terminal cap. PAS2 functioned as an O2‐sensor [ , 19 μM], utilizing the same Iβ Trp (W276) as PaAer2 to stabilize O2. The crystal structure of PAS2‐W276L was similar to that of PaAer2‐PAS but resided in an active conformation mimicking the ligand‐bound state, consistent with its signal‐on phenotype. PAS1 also bound O2 [ , 12 μM], although O2 binding was stabilized by either a Trp residue or Tyr residue. Moreover, PAS1 appeared to function as a signal modulator, regulating O2‐mediated signaling from PAS2 and resulting in activation of the cluster III chemosensory pathway.  相似文献   

2.
Vibrio vulnificus infects humans and causes lethal septicemia. The primary virulence factor is a multifunctional‐autoprocessing repeats‐in‐toxin (MARTX) toxin consisting of conserved repeats‐containing regions and various effector domains. Recent genomic analyses for the newly emerged V. vulnificus biotype 3 strain revealed that its MARTX toxin has two previously unknown effector domains. Herein, we characterized one of these domains, Domain X (DmXVv). A structure‐based homology search revealed that DmXVv belongs to the C58B cysteine peptidase subfamily. When ectopically expressed in cells, DmXVv was autoprocessed and induced cytopathicity including Golgi dispersion. When the catalytic cysteine or the region flanking the scissile bond was mutated, both autoprocessing and cytopathicity were significantly reduced indicating that DmXVv cytopathicity is activated by amino‐terminal autoprocessing. Consistent with this, host cell protein export was affected by Vibrio cells producing a toxin with wild‐type, but not catalytically inactive, DmXVv. DmXVv was found to localize to Golgi and to directly interact with Golgi‐associated ADP‐ribosylation factors ARF1, ARF3 and ARF4, although ARF binding was not necessary for the subcellular localization. Rather, this interaction was found to induce autoprocessing of DmXVv. These data demonstrate that the V. vulnificus hijacks the host ARF proteins to activate the cytopathic DmXVv effector domain of MARTX toxin.  相似文献   

3.
In Escherichia coli, the aerotaxis receptor Aer is an atypical receptor because it senses intracellular redox potential. The Aer sensor is a cytoplasmic, N-terminal PAS domain that is tethered to the membrane by a 47-residue F1 linker. Here we investigated the function, topology, and orientation of F1 by employing random mutagenesis, cysteine scanning, and disulfide cross-linking. No native residue was obligatory for function, most deleterious substitutions had radically different side chain properties, and all F1 mutants but one were functionally rescued by the chemoreceptor Tar. Cross-linking studies were consistent with the predicted α-helical structure in the N-terminal F1 region and demonstrated trigonal interactions among the F1 linkers from three Aer monomers, presumably within trimer-of-dimer units, as well as binary interactions between subunits. Using heterodimer analyses, we also demonstrated the importance of arginine residues near the membrane interface, which may properly anchor the Aer protein in the membrane. By incorporating these data into a homology model of Aer, we developed a model for the orientation of the Aer F1 and PAS regions in an Aer lattice that is compatible with the known dimensions of the chemoreceptor lattice. We propose that the F1 region facilitates the orientation of PAS and HAMP domains during folding and thereby promotes the stability of the PAS and HAMP domains in Aer.  相似文献   

4.
Recent studies have defined several virulence factors as vaccine candidates against Vibrio vulnificus. However, most of these factors have the potential to cause pathogenic effects in the vaccinees or induce incomplete protection. To overcome these drawbacks, a catalytically inactive form, CPDVv(C3725S), of the well‐conserved cysteine protease domain (CPD) of V. vulnificus multifunctional autoprocessing repeats‐in‐toxin (MARTXVv/RtxA1) was recombinantly generated and characterized. Notably, active and passive immunization with CPDVv(C3725S) conferred protective immunity against V. vulnificus strains. These results may provide a novel framework for developing safe and efficient subunit vaccines and/or therapeutics against V. vulnificus that target the CPD of MARTX toxins.  相似文献   

5.
HAMP domains are signal transduction domains typically located between the membrane anchor and cytoplasmic signaling domain of the proteins in which they occur. The prototypical structure consists of two helical amphipathic sequences (AS-1 and AS-2) connected by a region of undetermined structure. The Escherichia coli aerotaxis receptor, Aer, has a HAMP domain and a PAS domain with a flavin adenine dinucleotide (FAD) cofactor that senses the intracellular energy level. Previous studies reported mutations in the HAMP domain that abolished FAD binding to the PAS domain. In this study, using random and site-directed mutagenesis, we identified the distal helix, AS-2, as the component of the HAMP domain that stabilizes FAD binding. AS-2 in Aer is not amphipathic and is predicted to be buried. Mutations in the sequence coding for the contiguous proximal signaling domain altered signaling by Aer but did not affect FAD binding. The V264M residue replacement in this region resulted in an inverted response in which E. coli cells expressing the mutant Aer protein were repelled by oxygen. Bioinformatics analysis of aligned HAMP domains indicated that the proximal signaling domain is conserved in other HAMP domains that are not involved in chemotaxis or aerotaxis. Only one null mutation was found in the coding sequence for the HAMP AS-1 and connector regions, suggesting that these are not active signal transduction sites. We consider a model in which the signal from FAD is transmitted across a PAS-HAMP interface to AS-2 or the proximal signaling domain.  相似文献   

6.
Aer, the Escherichia coli aerotaxis receptor, faces the cytoplasm, where the PAS (Per-ARNT-Sim)-flavin adenine dinucleotide (FAD) domain senses redox changes in the electron transport system or cytoplasm. PAS-FAD interacts with a HAMP (histidine kinase, adenylyl cyclase, methyl-accepting protein, and phosphatase) domain to form an input-output module for Aer signaling. In this study, the structure of the Aer HAMP and proximal signaling domains was probed to elucidate structure-function relationships important for signaling. Aer residues 210 to 290 were individually replaced with cysteine and then cross-linked in vivo. The results confirmed that the Aer HAMP domain is composed of two α-helices separated by a structured loop. The proximal signaling domain consisted of two α-helices separated by a short undetermined structure. The Af1503 HAMP domain from Archaeoglobus fulgidus was recently shown to be a four-helix bundle. To test whether the Af1503 HAMP domain is a prototype for the Aer HAMP domain, the latter was modeled using coordinates from Af1503. Several findings supported the hypothesis that Aer has a four-helix HAMP structure: (i) cross-linking independently identified the same residues at the dimer interface that were predicted by the model, (ii) the rate of cross-linking for residue pairs was inversely proportional to the β-carbon distances measured on the model, and (iii) clockwise lesions that were not contiguous in the linear Aer sequence were clustered in one region in the folded HAMP model, defining a potential site of PAS-HAMP interaction during signaling. In silico modeling of mutant Aer proteins indicated that the four-helix HAMP structure was important for Aer stability or maturation. The significance of the HAMP and proximal signaling domain structure for signal transduction is discussed.  相似文献   

7.
HAMP domains, found in many bacterial signal transduction proteins, generally transmit an intramolecular signal between an extracellular sensory domain and an intracellular signaling domain. Studies of HAMP domains in proteins where both the input and output signals occur intracellularly are limited to those of the Aer energy taxis receptor of Escherichia coli, which has both a HAMP domain and a sensory PAS domain. Campylobacter jejuni has an energy taxis system consisting of the domains of Aer divided between two proteins, CetA (HAMP domain containing) and CetB (PAS domain containing). In this study, we found that the CetA HAMP domain differs significantly from that of Aer in the predicted secondary structure. Using similarity searches, we identified 55 pairs of HAMP/PAS proteins encoded by adjacent genes in a diverse group of microorganisms. We propose that these HAMP/PAS pairs form a new family of bipartite energy taxis receptors. Within these proteins, we identified nine residues in the HAMP domain and proximal signaling domain that are highly conserved, at least three of which are required for CetA function. Additionally, we demonstrated that CetA contributes to the invasion of human epithelial cells by C. jejuni, while CetB does not. This finding supports the hypothesis that members of HAMP/PAS pairs possess the capacity to act independently of each other in cellular traits other than energy taxis.  相似文献   

8.
The multifunctional‐autoprocessing repeats‐in‐toxin (MARTXVv) toxin that harbours a varied repertoire of effector domains is the primary virulence factor of Vibrio vulnificus. Although ubiquitously present among Biotype I toxin variants, the ‘Makes caterpillars floppy‐like’ effector domain (MCFVv) is previously unstudied. Using transient expression and protein delivery, MCFVv and MCFAh from the Aeromonas hydrophila MARTXAh toxin are shown for the first time to induce cell rounding. Alanine mutagenesis across the C‐terminal subdomain of MCFVv identified an Arg‐Cys‐Asp (RCD) tripeptide motif shown to comprise a cysteine protease catalytic site essential for autoprocessing of MCFVv. The autoprocessing could be recapitulated in vitro by the addition of host cell lysate to recombinant MCFVv, indicating induced autoprocessing by cellular factors. The RCD motif is also essential for cytopathicity, suggesting autoprocessing is essential first to activate the toxin and then to process a cellular target protein resulting in cell rounding. Sequence homology places MCFVv within the C58 cysteine protease family that includes the type III secretion effectors YopT from Yersinia spp. and AvrPphB from Pseudomonas syringae. However, the catalytic site RCD motif is unique compared with other C58 peptidases and is here proposed to represent a new subgroup of autopeptidase found within a number of putative large bacterial toxins.  相似文献   

9.
Vibrio vulnificus secretes a multifunctional cytotoxin RtxA (VvRtxA), which plays a major role in the bacterial pathogenesis. The lack of an efficient VvRtxA detection tool has hampered the progress of V. vulnificus pathogenesis research. This study aims to isolate VvRtxA specific single-chain variable fragments (scFv) to serve as a detection agent. The VvRtxA C-terminal Gly-Asp (GD) repeat-containing region, which has been implicated for calcium binding and target cell recognition, was chosen as an antigen to screen a scFv phage display library. A scFv clone that reacted positively to VvRtxA was successfully obtained. Using the isolated scFv, a cell-based enzyme-linked immunosorbent assay was established for detecting cell-associated VvRtxA toxin in V. vulnificus infected HEp-2 cells. The result is consistent with previous observations that secretion of VvRtxA toxin is time-dependent on bacteria contacting with host cells. Utilization of scFv for VvRtxA toxin detection provides an applicable strategy devoid of conventional immunization.  相似文献   

10.
In this paper we describe a biological indicator which can be used to study the behavior of Vibrio vulnificus, an important molluscan shellfish-associated human pathogen. A V. vulnificus ATCC 27562 derivative that expresses green fluorescent protein (GFP) and kanamycin resistance was constructed using conjugation. Strain validation was performed by comparing the GFP-expressing strain (Vv-GFP) and the wild-type strain (Vv-WT) with respect to growth characteristics, heat tolerance (45°C), freeze-thaw tolerance (−20o and −80°C), acid tolerance (pH 5.0, 4.0, and 3.5), cold storage tolerance (5°C), cold adaptation (15°C), and response to starvation. Levels of recovery were evaluated using nonselective medium (tryptic soy agar containing 2% NaCl) with and without sodium pyruvate. The indicator strain was subsequently used to evaluate the survival of V. vulnificus in oysters exposed to organic acids (citric and acetic acids) and various cooling regimens. In most cases, Vv-GFP was comparable to Vv-WT with respect to growth and survival upon exposure to various biological stressors; when differences between the GFP-expressing and parent strains occurred, they usually disappeared when sodium pyruvate was added to media. When V. vulnificus was inoculated into shellstock oysters, the counts dropped 2 log10 after 11 to 12 days of refrigerated storage, regardless of the way in which the oysters were initially cooled. Steeper population declines after 12 days of refrigerated storage were observed for both iced and refrigerated products than for slowly cooled product and product held under conservative harvest conditions. By the end of the refrigeration storage study (22 days), the counts of Vv-GFP in iced and refrigerated oysters had reached the limit of detection (102 CFU/oyster), but slowly cooled oysters and oysters stored under conservative harvest conditions still contained approximately 103 and >104 CFU V. vulnificus/oyster by day 22, respectively. The Vv-GFP levels in the oyster meat remained stable for up to 24 h when the meat was exposed to acidic conditions at various pH values. Ease of detection and comparability to the wild-type parent make Vv-GFP a good candidate for use in studying the behavior of V. vulnificus upon exposure to sublethal stressors that might be encountered during postharvest handling of molluscan shellfish.  相似文献   

11.
The Escherichia coli aerotaxis receptor, Aer, monitors cellular oxygen and redox potential via FAD bound to a cytosolic PAS domain. Here, we show that Aer‐PAS controls aerotaxis through direct, lateral interactions with a HAMP domain. This contrasts with most chemoreceptors where signals propagate along the protein backbone from an N‐terminal sensor to HAMP. We mapped the interaction surfaces of the Aer PAS, HAMP and proximal signalling domains in the kinase‐off state by probing the solvent accessibility of 129 cysteine substitutions. Inaccessible PAS‐HAMP surfaces overlapped with a cluster of PAS kinase‐on lesions and with cysteine substitutions that crosslinked the PAS β ‐scaffold to the HAMP AS‐2 helix. A refined Aer PAS‐HAMP interaction model is presented. Compared to the kinase‐off state, the kinase‐on state increased the accessibility of HAMP residues (apparently relaxing PAS‐HAMP interactions), but decreased the accessibility of proximal signalling domain residues. These data are consistent with an alternating static‐dynamic model in which oxidized Aer‐PAS interacts directly with HAMP AS‐2, enforcing a static HAMP domain that in turn promotes a dynamic proximal signalling domain, resulting in a kinase‐off output. When PAS‐FAD is reduced, PAS interaction with HAMP is relaxed and a dynamic HAMP and static proximal signalling domain convey a kinase‐on output.  相似文献   

12.
Aquaporins are membrane channels that facilitate the transport of water and other small molecules across the cellular membranes. We examined the role of six aquaporins of Vitis vinifera (cv. Touriga nacional) in the transport of water and atypical substrates (other than water) in an aqy-null strain of Saccharomyces cerevisiae. Their functional characterization for water transport was performed by stopped-flow fluorescence spectroscopy. The evaluation of permeability coefficients (Pf) and activation energies (Ea) revealed that three aquaporins (VvTnPIP2;1, VvTnTIP1;1 and VvTnTIP2;2) are functional for water transport, while the other three (VvTnPIP1;4, VvTnPIP2;3 and VvTnTIP4;1) are non-functional. TIPs (VvTnTIP1;1 and VvTnTIP2;2) exhibited higher water permeability than VvTnPIP2;1. All functional aquaporins were found to be sensitive to HgCl2, since their water conductivity was reduced (24–38%) by the addition of 0.5 mM HgCl2. Expression of Vitis aquaporins caused different sensitive phenotypes to yeast strains when grown under hyperosmotic stress generated by KCl or sorbitol. Our results also indicate that Vitis aquaporins are putative transporters of other small molecules of physiological importance. Their sequence analyses revealed the presence of signature sequences for transport of ammonia, boron, CO2, H2O2 and urea. The phenotypic growth variations of yeast cells showed that heterologous expression of Vitis aquaporins increased susceptibility to externally applied boron and H2O2, suggesting the contribution of Vitis aquaporins in the transport of these species.  相似文献   

13.
During chemotaxis toward asparagine by Bacillus subtilis, the ligand is thought to bind to the chemoreceptor McpB on the exterior of the cell and induce a conformational change. This change affects the degree of phosphorylation of the CheA kinase bound to the cytoplasmic region of the receptor. Until recently, the sensing domains of the B. subtilis receptors were thought to be structurally similar to the well studied Escherichia coli four-helical bundle. However, sequence analysis has shown the sensing domains of receptors from these two organisms to be vastly different. Homology modeling of the sensing domain of the B. subtilis asparagine receptor McpB revealed two tandem PAS domains. McpB mutants having alanine substitutions in key arginine and tyrosine residues of the upper PAS domain but not in any residues of the lower PAS domain exhibited a chemotactic defect in both swarm plates and capillary assays. Thus, binding does not appear to occur across any dimeric surface but within a monomer. A modified capillary assay designed to determine the concentration of attractant where chemotaxis is most sensitive showed that when Arg-111, Tyr-121, or Tyr-133 is mutated to an alanine, much more asparagine is required to obtain an active chemoreceptor. Isothermal titration calorimetry experiments on the purified sensing domain showed a KD to asparagine of 14 μm, with the three mutations leading to less efficient binding. Taken together, these results reveal not only a novel chemoreceptor sensing domain architecture but also, possibly, a different mechanism for chemoreceptor activation.  相似文献   

14.
The Escherichia coli energy-sensing Aer protein initiates aerotaxis towards environments supporting optimal cellular energy. The Aer sensor is an N-terminal, FAD-binding, PAS domain. The PAS domain is linked by an F1 region to a membrane anchor, and in the C-terminal half of Aer, a HAMP domain links the membrane anchor to the signaling domain. The F1 region, membrane anchor, and HAMP domain are required for FAD binding. Presumably, alterations in the redox potential of FAD induce conformational changes in the PAS domain that are transmitted to the HAMP and C-terminal signaling domains. In this study we used random mutagenesis and intragenic pseudoreversion analysis to examine functional interactions between the HAMP domain and the N-terminal half of Aer. Missense mutations in the HAMP domain clustered in the AS-2 alpha-helix and abolished FAD binding to Aer, as previously reported. Three amino acid replacements in the Aer-PAS domain, S28G, A65V, and A99V, restored FAD binding and aerotaxis to the HAMP mutants. These suppressors are predicted to surround a cleft in the PAS domain that may bind FAD. On the other hand, suppression of an Aer-C253R HAMP mutant was specific to an N34D substitution with a predicted location on the PAS surface, suggesting that residues C253 and N34 interact or are in close proximity. No suppressor mutations were identified in the F1 region or membrane anchor. We propose that functional interactions between the PAS domain and the HAMP AS-2 helix are required for FAD binding and aerotactic signaling by Aer.  相似文献   

15.
The Escherichia coli Aer protein contains an N-terminal PAS domain that binds flavin adenine dinucleotide (FAD), senses aerotactic stimuli, and communicates with the output signaling domain. To explore the roles of the intervening F1 and HAMP segments in Aer signaling, we isolated plasmid-borne aerotaxis-defective mutations in a host strain lacking all chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family. Under these conditions, Aer alone established the cell's run/tumble swimming pattern and modulated that behavior in response to oxygen gradients. We found two classes of Aer mutants: null and clockwise (CW) biased. Most mutant proteins exhibited the null phenotype: failure to elicit CW flagellar rotation, no aerosensing behavior in MCP-containing hosts, and no apparent FAD-binding ability. However, null mutants had low Aer expression levels caused by rapid degradation of apparently nonnative subunits. Their functional defects probably reflect the absence of a protein product. In contrast, CW-biased mutant proteins exhibited normal expression levels, wild-type FAD binding, and robust aerosensing behavior in MCP-containing hosts. The CW lesions evidently shift unstimulated Aer output to the CW signaling state but do not block the Aer input-output pathway. The distribution and properties of null and CW-biased mutations suggest that the Aer PAS domain may engage in two different interactions with HAMP and the HAMP-proximal signaling domain: one needed for Aer maturation and another for promoting CW output from the Aer signaling domain. Most aerotaxis-defective null mutations in these regions seemed to affect maturation only, indicating that these two interactions involve structurally distinct determinants.  相似文献   

16.
It was previously shown that the chemotaxis gene cluster 1 (cheYZABW) was required for chemotaxis. In this study, the involvement of the same cluster in aerotaxis is described and two transducer genes for aerotaxis are identified. Aerotaxis assays of a number of deletion-insertion mutants of Pseudomonas aeruginosa PAO1 revealed that the chemotaxis gene cluster 1 and cheR are required for aerotaxis. Mutant strains which contained deletions in the methyl-accepting chemotaxis protein-like genes tlpC and tlpG showed decreased aerotaxis. A double mutant deficient in tlpC and tlpG was negative for aerotaxis. TlpC has 45% amino acid identity with the Escherichia coli aerotactic transducer Aer. The TlpG protein has a predicted C-terminal segment with 89% identity to the highly conserved domain of the E. coli serine chemoreceptor Tsr. A hydropathy plot of TlpG indicated that hydrophobic membrane-spanning regions are missing in TlpG. A PAS motif was found in the N-terminal domains of TlpC and TlpG. On this basis, the tlpC and tlpG genes were renamed aer and aer-2, respectively. No significant homology other than the PAS motif was detected in the N-terminal domains between Aer and Aer-2.  相似文献   

17.
The energy taxis receptor Aer, in Escherichia coli , senses changes in the redox state of the electron transport system via an flavin adenine dinucleotide cofactor bound to a PAS domain. The PAS domain (a sensory domain named after three proteins P er, A RNT and S im, where it was first identified) is thought to interact directly with the Aer HAMP domain to transmit this signal to the highly conserved domain (HCD) found in chemotaxis receptors. An apparent energy taxis system in Campylobacter jejuni is composed of two proteins, CetA and CetB, that have the domains of Aer divided between them. CetB has a PAS domain, while CetA has a predicted transmembrane region, HAMP domain and the HCD. In this study, we examined the expression of cetA and cetB and the biochemical properties of the proteins they encode. cetA and cetB are co-transcribed independently of the flagellar regulon. CetA has two transmembrane helices in a helical hairpin while CetB is a peripheral membrane protein tightly associated with the membrane. CetB levels are CetA dependent. Additionally, we demonstrated that both CetA and CetB participate in complexes, including a likely CetB dimer and a complex that may include both CetA and CetB. This study provides a foundation for further characterization of signal transduction mechanisms within CetA/CetB.  相似文献   

18.
Aer, the Escherichia coli aerotaxis (oxygen-sensing) receptor, is representative of a small class of receptors that face the cytoplasm in bacteria. Instead of sensing oxygen directly, Aer detects redox changes in the electron transport system or cytoplasm when the bacteria enter or leave a hypoxic microniche. As a result, Aer sensing also enables bacteria to avoid environments where carbon deficiency, unfavourable reduction potential or other insults would limit energy production. An FAD-binding PAS domain is the sensor for Aer and a HAMP domain interacts with the PAS domain to form an input-output module for signal transduction. By analogy to the first solution structure of an isolated HAMP domain from Archaeoglobus, Aer HAMP is proposed to fold into a four-helix bundle that rotates between a signal-on and signal-off conformation. Aer is the first protein in which a PAS-HAMP input-output module has been investigated. The structure and signal transduction mechanism of Aer is providing important insights into signalling by PAS and HAMP domains.  相似文献   

19.
Aims: To develop an in vitro screening method to be used for identifying potential effective chemotherapeutants to control Aeromonas hydrophila infections. Methods and Results: Using catfish gill cells G1B and four chemicals (hydrogen peroxide, sodium chloride, potassium permanganate and d ‐mannose), the feasibility of using an in vitro screening method to identify potential effective chemotherapeutants was evaluated in this study. In vitro screening results revealed that, at concentration of 100 mg l?1, H2O2 was the only chemical tested that was able to completely abolish the attachment and invasion of Aer. hydrophila to catfish gill cells. In vivo virulence studies using live channel catfish through bath immersion confirmed that H2O2 was the only chemical tested that was able to significantly (P < 0·001) reduce the mortality (from 90 or 100% to 0 or 20%) caused by Aer. hydrophila infections. Conclusions: The in vitro screening method using catfish gill cells G1B could be used to initially identify potential effective chemotherapeutants to control Aer. hydrophila. Significance and Impact of the Study: An in vitro screening method using catfish gill cells to identify potential effective chemotherapeutants described here will cut cost in research compared with the method of using live fish to screen lead compounds for fish disease control.  相似文献   

20.
Gram‐negative Vibrio species secrete multifunctional autoprocessing repeats‐in‐toxin (MARTX) toxins associated with bacterial pathogenesis. Here, the cross‐reactivity and cross‐protectivity of mAbs against V. vulnificus RtxA1/MARTXVv was evaluated. Passive administration of any of these mAbs (21RA, 24RA, 46RA, 47RA and 50RA) provided strong protection against lethal V. cholerae infection. Interestingly, 24RA and 46RA, which map to the cysteine protease domain of V. cholerae MARTXVc, inhibited CPD autocleavage in vitro; this process is involved in V. cholerae pathogenesis. These results generate new insight into the development of broadly protective mAbs and/or vaccines against Vibrio species with MARTX toxins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号