首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
外源碳输入对土壤碳源可利用性的改变不仅直接影响着微生物参与陆地生态系统的碳循环过程,而且也制约着微生物对其它营养元素的需求。在大气氮沉降持续增加的全球变化背景下,部分地区已出现生态系统氮养分条件的显著变化甚至土壤中活性氮素的过量积累,进而带来微生物对碳源需求的增加。通过人为调控碳源的可利用性,改善微生物的碳限制状况,将对科学的增加陆地生态系统固碳能力具有极为重大的意义。综述了国内外有关外源碳输入对土壤碳排放、凋落物分解以及土壤碳库影响及其主要的微生物作用机制的相关研究结果,以期能够为未来氮沉降持续增加情景下,如何科学有效地提高生态系统的碳汇潜力提供一定的参考。  相似文献   

2.
农田生态系统耕作方式显著影响土壤微生物群落结构和功能,进而影响土壤微生物介导的土壤碳循环过程。以免耕结合作物秸秆还田为核心的保护性耕作是提升土壤碳汇功能和肥力的重要措施,其中土壤微生物发挥了关键作用。尽管有较多关于保护性耕作下微生物群落结构与功能的研究,但由于土壤系统的复杂性、环境因素以及微生物群落评价方法的差异性,尚未形成对保护性耕作下土壤微生物群落响应规律的系统认知。此外,研究多关注土壤微生物作为分解者的作用以及植物源碳对土壤碳库形成的贡献,而忽略了微生物源碳对土壤碳库形成和稳定的贡献。本文在归纳土壤有机质形成和稳定理论体系演变的基础上,梳理了土壤微生物研究方法的进展,重点阐述了保护性耕作对土壤微生物生物量、群落多样性和组成、碳代谢活性以及微生物源有机碳截获的影响,并对未来该领域的研究方向进行展望,以期为探索农田生态系统土壤微生物群落响应规律及其介导的土壤碳循环功能提供参考。  相似文献   

3.
Soil carbon transformation and sequestration have received significant interest in recent years due to a growing need for quantitating its role in mitigating climate change. Even though our understanding of the nature of soil organic matter has recently been substantially revised, fundamental uncertainty remains about the quantitative importance of microbial necromass as part of persistent organic matter. Addressing this uncertainty has been hampered by the absence of quantitative assessments whether microbial matter makes up the majority of the persistent carbon in soil. Direct quantitation of microbial necromass in soil is very challenging because of an overlapping molecular signature with nonmicrobial organic carbon. Here, we use a comprehensive analysis of existing biomarker amino sugar data published between 1996 and 2018, combined with novel appropriation using an ecological systems approach, elemental carbon–nitrogen stoichiometry, and biomarker scaling, to demonstrate a suit of strategies for quantitating the contribution of microbe‐derived carbon to the topsoil organic carbon reservoir in global temperate agricultural, grassland, and forest ecosystems. We show that microbial necromass can make up more than half of soil organic carbon. Hence, we suggest that next‐generation field management requires promoting microbial biomass formation and necromass preservation to maintain healthy soils, ecosystems, and climate. Our analyses have important implications for improving current climate and carbon models, and helping develop management practices and policies.  相似文献   

4.
李强 《微生物学报》2022,62(6):2188-2197
在水-二氧化碳-碳酸盐岩-生物的相互作用下,岩溶碳循环活跃,在全球形成8.24×108 t C/a的岩溶碳汇,约占全球遗漏汇的29.4%,其中部分岩溶碳汇以土壤有机碳的形式固存,因此碱性土壤固碳是未来碳中和的主要途径。微生物作为土壤碳循环的重要驱动者,影响着土壤有机碳主要赋存形式即植物残体碳与微生物残体碳的动态变化。本文通过综述岩溶土壤有机碳库储量、岩溶土壤有机碳库的来源与构成、影响岩溶土壤有机碳库动态的微生物因素以及岩溶土壤有机碳库更新的微生物机制,探讨了微生物对岩溶土壤植物残体碳与微生物残体碳的影响,并提出亟待解决的关键科学问题。这为深入研究岩溶区土壤有机碳库分配、更新及其维持的微生物机制,深化对岩溶土壤碳循环及其微生物机理认识,进而为应对千分之四全球土壤增碳计划提供了参考。  相似文献   

5.
The carbon content of microbial biomass and the kinetic characteristics of microbial respiration response to substrate addition have been estimated for chernozem soils under different land use: arable lands used for 10, 46, and 76 years, mowed meadow, natural forest, and forest shelter belt. Microbial biomass and the content of microbial carbon in humus (Cmic /Corg) decreased in the following order: soils under forest cenoses—mowed meadow—10-year arable land—46- and 75-year arable land. The amount of microbial carbon in the long-plowed horizon was 40% of its content in the upper horizon of natural forest. Arable soils were characterized by a lower metabolic diversity of microbial community and by the highest portion of microorganisms able to grow directly on glucose introduced into soil. The effects of different scenarios of carbon sequestration in soil on the amounts and activity of microbial biomass are discussed.  相似文献   

6.
作为调节土壤碳矿化过程的重要参数,微生物碳利用效率(CUE)对理解陆地生态系统中的碳循环至关重要。本研究在戴云山罗浮栲林设置对照(0 kg N·hm-2·a-1)、低氮(40 kg N·hm-2·a-1)和高氮(80 kg N·hm-2·a-1) 3个氮添加水平以模拟氮沉降,测定了表层(0~10 cm)土壤基本理化性质、有机碳组分、微生物生物量和酶活性;并利用18O标记水方法测定土壤微生物CUE,以更好地理解氮沉降加剧对微生物CUE的影响及其影响因素。结果表明: 短期氮添加显著降低了土壤微生物的呼吸速率、碳和氮获取酶活性,但显著增加了土壤微生物CUE。β-N-乙酰氨基酸葡糖苷酶(NAG)/微生物生物量碳(MBC)、微生物呼吸速率、β-葡萄糖苷酶(BG)/MBC、纤维素水解酶(CBH)/MBC和土壤有机碳含量是影响CUE的主要因素,且CUE与NAG/MBC、微生物呼吸速率、BG/MBC和CBH/MBC呈显著负相关,与土壤有机碳呈显著正相关。综上,短期氮添加导致土壤微生物获取碳和氮的成本降低,减少微生物呼吸,从而提高了土壤微生物CUE,这将有助于提高罗浮栲林土壤碳固存潜力。  相似文献   

7.
Exogenous carbon turnover within soil food web is important in determining the trade-offs between soil organic carbon (SOC) storage and carbon emission. However, it remains largely unknown how soil food web influences carbon sequestration through mediating the dual roles of microbes as decomposers and contributors, hindering our ability to develop policies for soil carbon management. Here, we conducted a 13C-labeled straw experiment to demonstrate how soil food web regulated the residing microbes to influence the soil carbon transformation and stabilization process after 11 years of no-tillage. Our work demonstrated that soil fauna, as a “temporary storage container,” indirectly influenced the SOC transformation processes and mediated the SOC sequestration through feeding on soil microbes. Soil biota communities acted as both drivers of and contributors to SOC cycling, with 32.0% of exogenous carbon being stabilizing in the form of microbial necromass as “new” carbon. Additionally, the proportion of mineral-associated organic carbon and particulate organic carbon showed that the “renewal effect” driven by the soil food web promoted the SOC to be more stable. Our study clearly illustrated that soil food web regulated the turnover of exogenous carbon inputs by and mediated soil carbon sequestration through microbial necromass accumulation.  相似文献   

8.
冻融期去根处理对小兴安岭6种林型土壤微生物量的影响   总被引:1,自引:0,他引:1  
林尤伟  金光泽 《生态学报》2016,36(19):6159-6169
春季冻融期,在小兴安岭的阔叶红松(Pinus koraiensis)林、谷地云冷杉(Picea koraiensis-Abies nephrolepis)林、阔叶红松择伐林、白桦(Betula platyphylla)次生林、红松人工林、兴安落叶松(Larix gmelinii)人工林的去根处理样地和对照样地进行野外取土实验,分析了根去除对上述林型土壤微生物量的影响以及与土壤环境因子的关系。结果表明:冻融循环期间对照样地和去根处理样地的林型、土壤层次、取样时间均显著地影响土壤微生物量碳(MBC)(P0.05),对照样地中各林型的土壤微生物量氮(MBN)差异显著,而去根处理样地中各林型的MBN没有显著差异(P0.05);冻融循环期间去根处理显著地减少了大部分林型及土层(谷地云冷杉林0—10 cm及择伐林外)的MBC,而去根处理对大部分林型及土层(阔叶红松林0—10 cm,谷地云冷杉林和择伐林的10—20 cm除外)的MBN没有显著影响。说明在小兴安岭春季冻融期根系对土壤微生物量的影响不可忽视。  相似文献   

9.
武夷山低海拔和高海拔森林土壤有机碳的矿化特征   总被引:2,自引:0,他引:2  
研究不同海拔土壤有机碳矿化对深入认识不同海拔森林土壤有机碳动态变化具有重要意义.本文以武夷山低海拔和高海拔森林土壤为研究对象,通过室内模拟其在各自年平均气温(17、9℃)条件下的矿化培养试验,探讨土壤有机碳矿化特征的差异.结果表明:培养126 d后,尽管高海拔森林土壤的有机碳含量显著高于低海拔森林土壤,但低海拔和高海拔森林土壤在各自环境温度背景下的有机碳累积矿化量并无显著差异.一级动力学方程均能较好地模拟高低海拔森林土壤有机碳矿化特征,高海拔和低海拔森林土壤有机碳潜在矿化量(CP)和矿化速率常数均无显著差异,但低海拔土壤C_P/SOC值和矿化率显著高于高海拔土壤,表明在环境温度背景下,低海拔土壤固碳能力低于高海拔土壤.随着培养时间增加,高海拔土壤微生物生物量碳和微生物熵显著高于低海拔土壤,表明高海拔土壤微生物的碳同化量高于低海拔土壤微生物,有利于有机碳的积累.高海拔森林土壤中的β-葡萄糖甘酶和纤维素水解酶高于低海拔森林土壤,说明高海拔土壤微生物可能更多地分解活性碳.未来气候变暖可能暗示着会降低高海拔土壤有机碳固碳能力和微生物碳利用效率,从而导致土壤有机碳储量下降.  相似文献   

10.
陆地和淡水生态系统新型微生物氮循环研究进展   总被引:1,自引:0,他引:1  
祝贵兵 《微生物学报》2020,60(9):1972-1984
氮生物地球化学循环是地球物质循环的重要枢纽,是决定陆地生态系统生产力水平、水资源安全、温室气体生成排放的关键过程。氮循环是由微生物介导的一系列复杂过程,不同形态、价态氮化合物的转化分别由相应的功能微生物驱动完成。随着厌氧氨氧化、完全氨氧化等新型氮转化过程的相继报道和发现更新了人们对氮循环的认识。本文综述了陆地和淡水生态系统中厌氧氨氧化(anammox)、硝酸盐异化还原为铵(DNRA)、完全氨氧化(comammox)等新型氮循环过程的发生机制、热区分布及环境效应,并总结了这三种氮循环的相互关系。  相似文献   

11.
土壤微生物碳素利用效率研究进展   总被引:4,自引:2,他引:2  
陈智  于贵瑞 《生态学报》2020,40(3):756-767
土壤微生物碳素利用效率(CUE)是指微生物将吸收的碳(C)转化为自身生物量C的效率,也称为微生物的生长效率。土壤微生物CUE是生态系统C循环中的重要生理生态学参数,影响着生态系统的C固持、周转、土壤矿化以及温室气体排放等过程。在全球环境变化背景下,认识土壤微生物CUE的变异及其影响机制,对于更好的认识生态系统C循环过程及其对全球变化的响应具有重要意义。概述了CUE的定义及其测定方法,重点综述和分析土壤微生物CUE的变异及影响因素取得的研究进展。基于现有研究的分析得出,土壤微生物CUE通常表示为微生物的生长与吸收的比值,分为基于微生物生长速率、微生物生物量、底物吸收速率和底物浓度变化等方法进行测定。土壤微生物CUE在0.2—0.8的范围内变化,这种变异主要受到来自热力学、生态环境因子、底物养分质量和有效性、化学计量平衡以及微生物群落组成的影响。今后土壤微生物CUE的研究应加强对微量代谢组分的定量分析,生物和环境要素交互影响的调控机理解析,以及微生物动态生理响应过程的碳循环模型优化。  相似文献   

12.
长期模拟升温对崇明东滩湿地土壤微生物生物量的影响   总被引:1,自引:0,他引:1  
以崇明东滩芦苇湿地为对象,采用开顶室生长箱(Open top chambers OTCs)原位模拟大气升温试验,研究了连续升温8a对崇明东滩湿地0—40cm土层土壤微生物生物量碳氮含量的影响。结果表明:连续升温显著提高了崇明东滩湿地土壤微生物生物量碳氮含量,从土壤表层到深层(0—10,10—20,20—30,30—40cm),微生物生物量碳分别增加了39.32%、70.79%、65.20%、74.09%,微生物生物量氮分别增加了66.46%、178.27%、47.24%、64.11%。但升温对土壤微生物生物量的影响因不同土层和不同季节并未表现出统一的规律,长期模拟升温显著提高4月0—20cm土层和7月0—40cm土层微生物生物量碳氮含量,对10月0—40cm土层微生物生物量碳含量没有影响,但是显著提高了10月0—40cm土层微生物生物量氮含量,同时,微生物生物量碳氮比在7月也显著提高。相关分析表明:无论在升温条件还是在对照条件下,土壤温度、含水量、总氮与土壤微生物生物量碳氮及微生物生物量碳氮比均无相关关系,升温条件下,有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著正相关,但是在对照条件下有机碳与微生物生物量碳氮含量以及微生物生物量碳氮比呈显著负相关。因此,土壤有机碳是影响土壤微生物生物量碳氮含量对长期模拟升温响应的重要生态因子。  相似文献   

13.
Soil organic carbon (SOC) is a valuable resource for mediating global climate change and securing food production. Despite an alarming rate of global plant diversity loss, uncertainties concerning the effects of plant diversity on SOC remain, because plant diversity not only stimulates litter inputs via increased productivity, thus enhancing SOC, but also stimulates microbial respiration, thus reducing SOC. By analysing 1001 paired observations of plant mixtures and corresponding monocultures from 121 publications, we show that both SOC content and stock are on average 5 and 8% higher in species mixtures than in monocultures. These positive mixture effects increase over time and are more pronounced in deeper soils. Microbial biomass carbon, an indicator of SOC release and formation, also increases, but the proportion of microbial biomass carbon in SOC is lower in mixtures. Moreover, these species‐mixture effects are consistent across forest, grassland, and cropland systems and are independent of background climates. Our results indicate that converting 50% of global forests from mixtures to monocultures would release an average of 2.70 Pg C from soil annually over a period of 20 years: about 30% of global annual fossil‐fuel emissions. Our study highlights the importance of plant diversity preservation for the maintenance of soil carbon sequestration in discussions of global climate change policy.  相似文献   

14.
耕作方式对紫色水稻土有机碳和微生物生物量碳的影响   总被引:8,自引:2,他引:8  
以位于西南大学的农业部紫色土生态环境重点野外科学观测试验站始于1990年的长期定位试验田为对象,研究了冬水田平作(DP)、水旱轮作(SH)、垄作免耕(LM)及垄作翻耕(LF)等4种耕作方式对紫色水稻土有机碳(SOC)和微生物生物量碳(SMBC)的影响。结果表明,4种耕作方式下SOC和SMBC均呈现出在土壤剖面垂直递减趋势,翻耕栽培下其降低较均匀,而免耕栽培下其富集在表层土壤中。同一土层不同耕作方式间SOC和SMBC的差异在表层最大,随着土壤深度的增加,各处理之间的差异逐渐减小。在0—60 cm剖面中,SOC含量依次为:LM(17.6 g/kg)>DP(13.9 g/kg)>LF(12.5 g/kg)>SH(11.3 g/kg),SOC储量也依次为:LM(158.52 Mg C/hm2)>DP(106.74 Mg C/hm2)>LF(93.11 Mg C/hm2)>SH(88.59 Mg C/hm2),而SMBC含量则依次为:LM(259 mg/kg)>SH(213 mg/kg)>LF(160 mg/kg)>DP(144 mg/kg)。与其它3种耕作方式比较,LM处理显著提高SOC含量和储量以及SMBC含量。对土壤微生物商(SMBC/SOC)进行分析发现,耕作方式对SOC和SMBC的影响程度并不一致。SMBC与SOC、全氮、全磷、全硫、碱解氮、有效磷均呈现极显著正相关(P<0.01),与有效硫呈显著正相关(P<0.05);表明SMBC可以作为表征紫色水稻土土壤肥力的敏感因子。  相似文献   

15.
Rhizodeposition represents a relatively large carbon flow from a plant’s root into the surrounding soil. This carbon flow may have important implications for nitrogen mineralisation and carbon sequestration, but is still poorly understood. In this paper we use a simple compartment model of carbon flow in the rhizosphere to investigate the proposed benefits of rhizodeposition and the effect of microbial grazers. Model parameters were fitted to published, experimental data. Analysis of the model showed that dead organic matter (necromass) had a much longer time-scale than the other carbon pools (soluble, microbial and grazer carbon), which allowed an approximate, mathematical solution of the model to be derived. This solution shows that the level of necromass in the soil is an important factor in many processes of interest. The short-term carbon and nitrogen turnover increases with the level of necromass. Microbial grazers decrease carbon turnover at high levels of necromass, whilst at lower, and possibly more realistic, levels of necromass grazers increase turnover. However, the largest effect of grazers was to increase carbon turnover by 10%, suggesting that grazers are relatively unimportant in larger scale models of soil organic matter turnover. The marginal benefits of rhizodeposition increase with the level of necromass. The model suggests that the short-term benefits of rhizodeposition to a plant are marginal, but long-term benefits may still occur.  相似文献   

16.
秸秆还田配施中微量元素对农田土壤有机碳固持的影响   总被引:1,自引:0,他引:1  
为研究秸秆还田配施中量元素(S)和微量元素(Fe和Zn)对粮田土壤有机碳固持的影响,进行了为期52 d的室内玉米秸秆腐解培养试验. 结果表明:秸秆腐解过程中分别添加S、Fe和Zn元素,均提高了微生物生物量碳(MBC)及土壤CO2-C矿化速率,52 d腐解培养结束后,CO2-C的累积矿化量显著提高,但土壤有机碳含量并未显著降低;3种元素中,添加Fe或Zn的处理提高了土壤惰性碳库、惰性碳库比例及土壤有机碳表观平衡,有利于土壤有机碳固持,而添加S的处理却降低了惰性有机碳比例及土壤有机碳表观平衡,不利于有机碳固持. 因此,在施N、P肥基础上,秸秆还田添加S、Fe或Zn均能促进土壤有机碳的矿化进程,但添加Fe或Zn可使更多有机碳固持于土壤中,添加S不利于土壤有机碳的固持.  相似文献   

17.
滨海盐沼湿地是缓解全球变暖的有效蓝色碳汇, 但是近岸海域富营养化导致的大量氮输入对盐沼湿地稳定性和碳汇功能构成严重威胁。潮汐作用下大量氮输入对盐沼湿地植物光合碳输入、植物-土壤碳分配和土壤碳输出等碳循环关键过程产生深刻影响, 进而影响盐沼湿地碳汇功能评估的准确性。该文从植物光合固碳、植物-土壤系统碳分配、土壤有机碳分解、土壤可溶性有机碳释放、盐沼湿地土壤碳库5个方面综述了氮输入对盐沼湿地碳循环关键过程的影响。在此基础上, 针对当前研究的不足, 提出今后的研究中, 需要进一步探究氮输入对盐沼湿地植物光合固碳及碳分配过程的影响、盐沼湿地土壤有机碳分解的微生物机制、盐沼湿地土壤可溶性有机碳产生和横向流动的影响、以及氮类型对盐沼湿地土壤碳库的影响。以期为揭示氮输入对盐沼湿地碳汇形成过程与机制提供基础资料和理论依据, 为评估未来近岸海域水体富营养化影响下滨海盐沼湿地碳库的潜在变化提供新思路。  相似文献   

18.
Species‐rich plant communities have been shown to be more productive and to exhibit increased long‐term soil organic carbon (SOC) storage. Soil microorganisms are central to the conversion of plant organic matter into SOC, yet the relationship between plant diversity, soil microbial growth, turnover as well as carbon use efficiency (CUE) and SOC accumulation is unknown. As heterotrophic soil microbes are primarily carbon limited, it is important to understand how they respond to increased plant‐derived carbon inputs at higher plant species richness (PSR). We used the long‐term grassland biodiversity experiment in Jena, Germany, to examine how microbial physiology responds to changes in plant diversity and how this affects SOC content. The Jena Experiment considers different numbers of species (1–60), functional groups (1–4) as well as functional identity (small herbs, tall herbs, grasses, and legumes). We found that PSR accelerated microbial growth and turnover and increased microbial biomass and necromass. PSR also accelerated microbial respiration, but this effect was less strong than for microbial growth. In contrast, PSR did not affect microbial CUE or biomass‐specific respiration. Structural equation models revealed that PSR had direct positive effects on root biomass, and thereby on microbial growth and microbial biomass carbon. Finally, PSR increased SOC content via its positive influence on microbial biomass carbon. We suggest that PSR favors faster rates of microbial growth and turnover, likely due to greater plant productivity, resulting in higher amounts of microbial biomass and necromass that translate into the observed increase in SOC. We thus identify the microbial mechanism linking species‐rich plant communities to a carbon cycle process of importance to Earth's climate system.  相似文献   

19.
Sea level rise and changes in precipitation can cause saltwater intrusion into historically freshwater wetlands, leading to shifts in microbial metabolism that alter greenhouse gas emissions and soil carbon sequestration. Saltwater intrusion modifies soil physicochemistry and can immediately affect microbial metabolism, but further alterations to biogeochemical processing can occur over time as microbial communities adapt to the changed environmental conditions. To assess temporal changes in microbial community composition and biogeochemical activity due to saltwater intrusion, soil cores were transplanted from a tidal freshwater marsh to a downstream mesohaline marsh and periodically sampled over 1 year. This experimental saltwater intrusion produced immediate changes in carbon mineralization rates, whereas shifts in the community composition developed more gradually. Salinity affected the composition of the prokaryotic community but did not exert a strong influence on the community composition of fungi. After only 1 week of saltwater exposure, carbon dioxide production doubled and methane production decreased by three orders of magnitude. By 1 month, carbon dioxide production in the transplant was comparable to the saltwater controls. Over time, we observed a partial recovery in methane production which strongly correlated with an increase in the relative abundance of three orders of hydrogenotrophic methanogens. Taken together, our results suggest that ecosystem responses to saltwater intrusion are dynamic over time as complex interactions develop between microbial communities and the soil organic carbon pool. The gradual changes in microbial community structure we observed suggest that previously freshwater wetlands may not experience an equilibration of ecosystem function until long after initial saltwater intrusion. Our results suggest that during this transitional period, likely lasting years to decades, these ecosystems may exhibit enhanced greenhouse gas production through greater soil respiration and continued methanogenesis.  相似文献   

20.
Carbon input to soil may decrease soil carbon content   总被引:21,自引:0,他引:21  
It is commonly predicted that the intensity of primary production and soil carbon (C) content are positively linked. Paradoxically, many long‐term field observations show that although plant litter is incorporated to soil in large quantities, soil C content does not necessarily increase. These results suggest that a negative relationship between C input and soil C conservation exists. Here, we demonstrate in controlled conditions that the supply of fresh C may accelerate the decomposition of soil C and induce a negative C balance. We show that soil C losses increase when soil microbes are nutrient limited. Results highlight the need for a better understanding of microbial mechanisms involved in the complex relationship between C input and soil C sequestration. We conclude that energy available to soil microbes and microbial competition are important determinants of soil C decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号