首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil as the largest global carbon pool has played a great role in sequestering the atmospheric carbon dioxide (CO2). Although global carbon sequestration potentials have been assessed since the 1980s, few investigations have been made on soil carbon sequestration (SCS) in China's cropland. China is a developing country and has a long history of agricultural activities. Estimation of SCS potentials in China's cropland is very important for assessing the potential measures to prevent the atmospheric carbon rise and predicting the atmospheric CO2 concentration in future. After review of the available results of the field experiments in China, relationships between SCS and nitrogen fertilizer application, straw return and no‐tillage (NT) practices were established for each of the four agricultural regions. According to the current agricultural practices and their future development, estimations were made on SCS by nitrogen fertilizer application, straw return and NT in China's cropland. In the current situation, nitrogen fertilizer application, straw return and zero tillage can sequester 5.96, 9.76 and 0.800 Tg C each year. Carbon sequestration potential will increase to 12.1 Tg C yr−1 if nitrogen is fertilized on experts' recommendations. The carbon sequestration potentials of straw return and NT can reach 34.4 and 4.60 Tg C yr−1 when these two techniques are further popularized. In these measures, straw return is the most promising one. Full popularization of straw return can reduce 5.3% of the CO2 emission from fossil fuel combustion in China in 1990, which meets the global mean CO2 reduction requested by the Kyoto Protocol (5.2%). In general, if more incentive policies can be elaborated and implemented, the SCS in China's cropland will be increased by about two times. So, popularization of the above‐mentioned agricultural measures for carbon sequestration can be considered as an effective tool to prevent the rapid rise of the atmospheric CO2 in China.  相似文献   

2.
草地土壤固碳潜力研究进展   总被引:9,自引:3,他引:6  
戴尔阜  黄宇  赵东升 《生态学报》2015,35(12):3908-3918
土壤固碳功能和固碳潜力已成为全球气候变化和陆地生态系统研究的重点。草地土壤有机碳库,作为陆地土壤有机碳库的重要组成部分,其较小幅度的波动,将会影响整个陆地生态系统碳循环,进而影响全球气候变化。因此,深入研究草地土壤固碳功能和固碳潜力对于适应和减缓气候变化具有重要意义。在土壤固碳潜力相关概念界定基础上,结合《2006年IPCC国家温室气体清单指南》,从样点及区域尺度上综述了目前关于草地土壤固碳潜力的一般估算方法,同时对各类方法的特点及适用性进行了评述,提出了草地生态系统固碳潜力研究概念模型。最后在对草地土壤固碳的影响因素及固碳措施总结的基础上,阐明了草地土壤有机碳固定研究中存在的问题和发展前景。  相似文献   

3.
Energy crops for biofuel production, especially switchgrass (Panicum virgatum), are of interest from a climate change perspective. Here, we use outputs from a crop growth model and life cycle assessment (LCA) to examine the global warming intensity (GWI; g CO2 MJ−1) and greenhouse gas (GHG) mitigation potential (Mg CO2 year−1) of biofuel systems based on a spatially explicit analysis of switchgrass grown on marginal land (abandoned former cropland) in Michigan, USA. We find that marginal lands in Michigan can annually produce over 0.57 hm3 of liquid biofuel derived from nitrogen-fertilized switchgrass, mitigating 1.2–1.5 Tg of CO2 year−1. About 96% of these biofuels can meet the Renewable Fuel Standard (60% reduction in lifecycle GHG emissions compared with conventional gasoline; GWI ≤37.2 g CO2 MJ−1). Furthermore, 73%–75% of these biofuels are carbon-negative (GWI less than zero) due to enhanced soil organic carbon (SOC) sequestration. However, simulations indicate that SOC levels would fail to increase and even decrease on the 11% of lands where SOC stocks >>200 Mg C ha−1, leading to carbon intensities greater than gasoline. Results highlight the strong climate mitigation potential of switchgrass grown on marginal lands as well as the needs to avoid carbon rich soils such as histosols and wetlands and to ensure that productivity will be sufficient to provide net mitigation.  相似文献   

4.
Biochar application to soils may increase carbon (C) sequestration due to the inputs of recalcitrant organic C. However, the effects of biochar application on the soil greenhouse gas (GHG) fluxes appear variable among many case studies; therefore, the efficacy of biochar as a carbon sequestration agent for climate change mitigation remains uncertain. We performed a meta‐analysis of 91 published papers with 552 paired comparisons to obtain a central tendency of three main GHG fluxes (i.e., CO2, CH4, and N2O) in response to biochar application. Our results showed that biochar application significantly increased soil CO2 fluxes by 22.14%, but decreased N2O fluxes by 30.92% and did not affect CH4 fluxes. As a consequence, biochar application may significantly contribute to an increased global warming potential (GWP) of total soil GHG fluxes due to the large stimulation of CO2 fluxes. However, soil CO2 fluxes were suppressed when biochar was added to fertilized soils, indicating that biochar application is unlikely to stimulate CO2 fluxes in the agriculture sector, in which N fertilizer inputs are common. Responses of soil GHG fluxes mainly varied with biochar feedstock source and soil texture and the pyrolysis temperature of biochar. Soil and biochar pH, biochar applied rate, and latitude also influence soil GHG fluxes, but to a more limited extent. Our findings provide a scientific basis for developing more rational strategies toward widespread adoption of biochar as a soil amendment for climate change mitigation.  相似文献   

5.
Agricultural soils in North America can be a sink for rising atmospheric CO2 concentrations through the formation of soil organic matter (SOM) or humus. Humification is limited by the availability of nutrients such as nitrogen (N). Recommended management practices (RMPs) that optimize N availability foster humus formation. This review examines the management practices that contribute to maximizing N availability for optimizing sequestration of atmospheric CO2 into soil humus. Farming practices that enhance nutrient use, reduce or eliminate tillage, and increase crop intensity, together, affect N availability and, therefore, C sequestration. N additions, from especially, livestock manure and leguminous cover crops are necessary for increasing grain and biomass yields and returning crop residues to the soil thereby increasing soil organic carbon (SOC) concentration. Conservation tillage practices enhance also the availability of N and increase SOC concentration. Increase in cropping intensity and/or crop rotations produce higher quantity and quality of residues, increase availability of N, and therefore foster increase in C sequestration. The benefit of C sequestration from N additions may be negated by CO2 and N2O emissions associated with production and application of N fertilizers. More studies need to be conducted to ascertain the benefits of adding N via manuring versus N fertilizer additions. Furthermore, site specific adaptive research is needed to identify RMPs that optimize soil N use efficiency while improving crop yield and C sequestration thereby curbing greenhouse gas (GHG) emissions. Due to the wide range of climate in North America, there is a large range of C sequestration potential in agricultural soils through N management. Humid croplands may have the potential to sequester 8–298 Tg C yr?1 while dry croplands may sequester 1–35 Tg C yr?1. These estimates, however, are highly uncertain and wide-ranging. Clearly, more research is needed to quantify, more precisely, the C sequestration potential across different N management scenarios especially in Mexico and Canada.  相似文献   

6.
Energy production from bioenergy crops may significantly reduce greenhouse gas (GHG) emissions through substitution of fossil fuels. Biochar amendment to soil may further decrease the net climate forcing of bioenergy crop production, however, this has not yet been assessed under field conditions. Significant suppression of soil nitrous oxide (N2O) and carbon dioxide (CO2) emissions following biochar amendment has been demonstrated in short‐term laboratory incubations by a number of authors, yet evidence from long‐term field trials has been contradictory. This study investigated whether biochar amendment could suppress soil GHG emissions under field and controlled conditions in a Miscanthus × Giganteus crop and whether suppression would be sustained during the first 2 years following amendment. In the field, biochar amendment suppressed soil CO2 emissions by 33% and annual net soil CO2 equivalent (eq.) emissions (CO2, N2O and methane, CH4) by 37% over 2 years. In the laboratory, under controlled temperature and equalised gravimetric water content, biochar amendment suppressed soil CO2 emissions by 53% and net soil CO2 eq. emissions by 55%. Soil N2O emissions were not significantly suppressed with biochar amendment, although they were generally low. Soil CH4 fluxes were below minimum detectable limits in both experiments. These findings demonstrate that biochar amendment has the potential to suppress net soil CO2 eq. emissions in bioenergy crop systems for up to 2 years after addition, primarily through reduced CO2 emissions. Suppression of soil CO2 emissions may be due to a combined effect of reduced enzymatic activity, the increased carbon‐use efficiency from the co‐location of soil microbes, soil organic matter and nutrients and the precipitation of CO2 onto the biochar surface. We conclude that hardwood biochar has the potential to improve the GHG balance of bioenergy crops through reductions in net soil CO2 eq. emissions.  相似文献   

7.
Agricultural lands occupy about 40–50% of the Earth's land surface. Agricultural practices can make a significant contribution at low cost to increasing soil carbon sinks, reducing greenhouse gas (GHG) emissions and contributing biomass feedstocks for energy use. Considering all gases, the global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030 is estimated to be ca. 5500–6000 Mt CO2‐eq. yr?1. Economic potentials are estimated to be 1500–1600, 2500–2700 and 4000–4300 Mt CO2‐eq. yr?1 at carbon prices of up to $US20, 50 and 100 t CO2‐eq.?1, respectively. The value of the global agricultural GHG mitigation at the same three carbon prices is $US32 000, 130 000 and 420 000 million yr?1, respectively. At the European level, early estimates of soil carbon sequestration potential in croplands were ca. 200 Mt CO2 yr?1, but this is a technical potential and is for geographical Europe as far east as the Urals. The economic potential is much smaller, with more recent estimates for the EU27 suggesting a maximum potential of ca. 20 Mt CO2‐eq. yr?1. The UK is small in global terms, but a large part of its land area (11 Mha) is used for agriculture. Agriculture accounts for about 7% of total UK GHG emissions. The mitigation potential of UK agriculture is estimated to be ca. 1–2 Mt CO2‐eq. yr?1, accounting for less than 1% of UK total GHG emissions.  相似文献   

8.
Primary forest conversion is a worldwide serious problem associated with human disturbance and climate change. Land use change from primary forest to plantation, grassland or agricultural land may lead to profound alteration in the emission of soil greenhouse gases (GHG). Here, we conducted a global meta‐analysis concerning the effects of primary forest conversion on soil GHG emissions and explored the potential mechanisms from 101 studies. Our results showed that conversion of primary forest significantly decreased soil CO2 efflux and increased soil CH4 efflux, but had no effect on soil N2O efflux. However, the effect of primary forest conversion on soil GHG emissions was not consistent across different types of land use change. For example, soil CO2 efflux did not respond to the conversion from primary forest to grassland. Soil N2O efflux showed a prominent increase within the initial stage after conversion of primary forest and then decreased over time while the responses of soil CO2 and CH4 effluxes were consistently negative or positive across different elapsed time intervals. Moreover, either within or across all types of primary forest conversion, the response of soil CO2 efflux was mainly moderated by changes in soil microbial biomass carbon and root biomass while the responses of soil N2O and CH4 effluxes were related to the changes in soil nitrate and soil aeration‐related factors (soil water content and bulk density), respectively. Collectively, our findings highlight the significant effects of primary forest conversion on soil GHG emissions, enhance our knowledge on the potential mechanisms driving these effects and improve future models of soil GHG emissions after land use change from primary forest.  相似文献   

9.
Sub-Saharan Africa (SSA) must undertake proper cropland intensification for higher crop yields while minimizing climate impacts. Unfortunately, no studies have simultaneously quantified greenhouse gas (GHG; CO2, CH4, and N2O) emissions and soil organic carbon (SOC) change in SSA croplands, leaving it a blind spot in the accounting of global warming potential (GWP). Here, based on 2-year field monitoring of soil emissions of CO2, CH4, and N2O, as well as SOC changes in two contrasting soil types (sandy vs. clayey), we provided the first, full accounting of GWP for maize systems in response to cropland intensifications (increasing nitrogen rates and in combination with crop residue return) in SSA. To corroborate our field observations on SOC change (i.e., 2-year, a short duration), we implemented a process-oriented model parameterized with field data to simulate SOC dynamic over time. We further tested the generality of our findings by including a literature synthesis of SOC change across maize-based systems in SSA. We found that nitrogen application reduced SOC loss, likely through increased biomass yield and consequently belowground carbon allocation. Residue return switched the direction of SOC change from loss to gain; such a benefit (SOC sequestration) was not compromised by CH4 emissions (negligible) nor outweighed by the amplified N2O emissions, and contributed to negative net GWP. Overall, we show encouraging results that, combining residue and fertilizer-nitrogen input allowed for sequestering 82–284 kg of CO2-eq per Mg of maize grain produced across two soils. All analyses pointed to an advantage of sandy over clayey soils in achieving higher SOC sequestration targets, and thus call for a re-evaluation on the potential of sandy soils in SOC sequestration across SSA croplands. Our findings carry important implications for developing viable intensification practices for SSA croplands in mitigating climate change while securing food production.  相似文献   

10.
森林生态系统具有吸收大气CO_2、缓解气候变化的作用。造林再造林作为京都议定书认可的大气CO_2减排途径,是提高森林固碳能力的低成本、有效策略。森林生态系统固碳能力还受森林采伐、气候变化、大气CO_2浓度升高、火灾以及虫害等自然因素和人为因素的强烈影响。综述了全球和区域造林再造林的固碳能力,以及目前较受重视的一些因素(森林采伐、气候变化、大气CO_2浓度升高、火灾以及虫害)对森林生态系统固碳能力的影响。结果表明,全球造林再造林固碳能力为148—2400TgC/a;采伐造成的全球森林碳损失最大为900 TgC/a,其次是火灾为300 TgC/a,虫害造成森林碳释放最小在2—107 TgC/a之间。建议在今后的研究中,应关注固碳措施和多种环境因素对森林生态系统固碳能力,尤其是对森林土壤固碳能力的影响,严格控制森林采伐和火灾发生,以及减少或避免造林再造林活动引起的碳泄漏。  相似文献   

11.
《Global Change Biology》2018,24(6):2513-2529
Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long‐term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil–crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO2e ha−1 year−1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N2O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO2e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas.  相似文献   

12.
Approximately half of the tropical biome is in some stage of recovery from past human disturbance, most of which is in secondary forests growing on abandoned agricultural lands and pastures. Reforestation of these abandoned lands, both natural and managed, has been proposed as a means to help offset increasing carbon emissions to the atmosphere. In this paper we discuss the potential of these forests to serve as sinks for atmospheric carbon dioxide in aboveground biomass and soils. A review of literature data shows that aboveground biomass increases at a rate of 6.2 Mg ha? 1 yr? 1 during the first 20 years of succession, and at a rate of 2.9 Mg ha? 1 yr? 1 over the first 80 years of regrowth. During the first 20 years of regrowth, forests in wet life zones have the fastest rate of aboveground carbon accumulation with reforestation, followed by dry and moist forests. Soil carbon accumulated at a rate of 0.41 Mg ha? 1 yr? 1 over a 100‐year period, and at faster rates during the first 20 years (1.30 Mg carbon ha? 1 yr? 1 ). Past land use affects the rate of both above‐ and belowground carbon sequestration. Forests growing on abandoned agricultural land accumulate biomass faster than other past land uses, while soil carbon accumulates faster on sites that were cleared but not developed, and on pasture sites. Our results indicate that tropical reforestation has the potential to serve as a carbon offset mechanism both above‐ and belowground for at least 40 to 80 years, and possibly much longer. More research is needed to determine the potential for longer‐term carbon sequestration for mitigation of atmospheric CO2 emissions.  相似文献   

13.
Biochar soil amendment (BSA) had been advocated as a promising approach to mitigate greenhouse gas (GHG) emissions in agriculture. However, the net GHG mitigation potential of BSA remained unquantified with regard to the manufacturing process and field application. Carbon footprint (CF) was employed to assess the mitigating potential of BSA by estimating all the direct and indirect GHG emissions in the full life cycles of crop production including production and field application of biochar. Data were obtained from 7 sites (4 sites for paddy rice production and 3 sites for maize production) under a single BSA at 20 t/ha?1 across mainland China. Considering soil organic carbon (SOC) sequestration and GHG emission reduction from syngas recycling, BSA reduced the CFs by 20.37–41.29 t carbon dioxide equivalent ha?1 (CO2‐eq ha?1) and 28.58–39.49 t CO2‐eq ha?1 for paddy rice and maize production, respectively, compared to no biochar application. Without considering SOC sequestration and syngas recycling, the net CF change by BSA was in a range of ?25.06 to 9.82 t CO2‐eq ha?1 and ?20.07 to 5.95 t CO2‐eq ha?1 for paddy rice and maize production, respectively, over no biochar application. As the largest contributors among the others, syngas recycling in the process of biochar manufacture contributed by 47% to total CF reductions under BSA for rice cultivation while SOC sequestration contributed by 57% for maize cultivation. There was a large variability of the CF reductions across the studied sites whether in paddy rice or maize production, due likely to the difference in GHG emission reductions and SOC increments under BSA across the sites. This study emphasized that SOC sequestration should be taken into account the CF calculation of BSA. Improved biochar manufacturing technique could achieve a remarkable carbon sink by recycling the biogas for traditional fossil‐fuel replacement.  相似文献   

14.
Global warming due to increasing greenhouse gases emission and the subsequent climatic changes are the most serious environmental challenges faced by environmental scientists, academicians, regulatory agencies and policy makers worldwide. Among the various greenhouse gases, CO2 constitutes a major share and its concentration is increasing rapidly. Therefore, there is perhaps an urgent need to formulate suitable policies and programs that can firmly reduce and sequester CO2 emissions in a sustainable way. In order to combat the predicted disaster due to rising CO2 level, several CO2 capture and storage technologies and medium are being widely pursued and deliberated. Among them soil carbon sequestration (SCS) is gaining global attention because of its stability and role in long-term surface reservoir, natural low cost and eco-friendly means to combat climate change. Apart from the carbon capturing, the process of soil carbon stabilization also provides other tangible benefits that includes achieving food security, by improving soil quality, wasteland reclamation and preventing soil erosion. The present article aimed to address all these concerns and provide strategies and critical research needs to implement SCS as a mitigation option for increasing atmospheric CO2 level and its future directions.  相似文献   

15.
Understanding the potential for greenhouse gas (GHG) mitigation in agricultural lands is a critical challenge for climate change policy. This study uses the DAYCENT ecosystem model to predict GHG mitigation potentials associated with soil management in Chinese cropland systems. Application of ecosystem models, such as DAYCENT, requires the evaluation of model performance with data sets from experiments relevant to the climate and management of the study region. DAYCENT was evaluated with data from 350 cropland experiments in China, including measurements of nitrous oxide emissions (N2O), methane emissions (CH4), and soil organic carbon (SOC) stock changes. In general, the model was reasonably accurate with R2 values for model predictions vs. measurements ranging from 0.71 to 0.85. Modeling efficiency varied from 0.65 for SOC stock changes to 0.83 for crop yields. Mitigation potentials were estimated on a yield basis (Mg CO2‐equivalent Mg?1Yield). The results demonstrate that the largest decrease in GHG emissions in rainfed systems are associated with combined effect of reducing mineral N fertilization, organic matter amendments and reduced‐till coupled with straw return, estimated at 0.31 to 0.83 Mg CO2‐equivalent Mg?1Yield. A mitigation potential of 0.08 to 0.36 Mg CO2‐equivalent Mg?1Yield is possible by reducing N chemical fertilizer rates, along with intermittent flooding in paddy rice cropping systems.  相似文献   

16.
National governments and international organizations perceive bioenergy, from crops such as Miscanthus, to have an important role in mitigating greenhouse gas (GHG) emissions and combating climate change. In this research, we address three objectives aimed at reducing uncertainty regarding the climate change mitigation potential of commercial Miscanthus plantations in the United Kingdom: (i) to examine soil temperature and moisture as potential drivers of soil GHG emissions through four years of parallel measurements, (ii) to quantify carbon (C) dynamics associated with soil sequestration using regular measurements of topsoil (0–30 cm) C and the surface litter layer and (iii) to calculate a life cycle GHG budget using site‐specific measurements, enabling the GHG intensity of Miscanthus used for electricity generation to be compared against coal and natural gas. Our results show that methane (CH4) and nitrous oxide (N2O) emissions contributed little to the overall GHG budget of Miscanthus, while soil respiration offset 30% of the crop's net aboveground C uptake. Temperature sensitivity of soil respiration was highest during crop growth and lowest during winter months. We observed no significant change in topsoil C or nitrogen stocks following 7 years of Miscanthus cultivation. The depth of litter did, however, increase significantly, stabilizing at approximately 7 tonnes dry biomass per hectare after 6 years. The cradle‐to‐farm gate GHG budget of this crop indicated a net removal of 24.5 t CO2‐eq ha?1 yr?1 from the atmosphere despite no detectable C sequestration in soils. When scaled up to consider the full life cycle, Miscanthus fared very well in comparison with coal and natural gas, suggesting considerable CO2 offsetting per kWh generated. Although the comparison does not account for the land area requirements of the energy generated, Miscanthus used for electricity generation can make a significant contribution to climate change mitigation even when combusted in conventional steam turbine power plants.  相似文献   

17.
Dairy systems in Europe contribute to the emissions of the greenhouse gases (GHGs) nitrous oxide (N2O), methane (CH4) and carbon dioxide (CO2). In this paper, the effects of improved nitrogen (N) management on GHG emissions from Dutch dairy farms are determined. The GHG emissions are calculated using the panel on climate change (IPCC) methodology for the Netherlands, an updated and refined IPCC methodology, and a full accounting approach. The changes in dairy farming over the last 20 years, and the consequences for N management are described using detailed farm‐level data, collected in 1985, 1997 and 2002. The selected years represent distinct stages in the implementation of N policies. The changes in N management have reduced the GHG emissions. A reduction of the N surplus per kilogram milk with 1 g N reduced the GHG emissions per kilogram milk with approximately 29 g CO2‐equivalents. The reduction of the N surpluses was mainly brought about by reduced fertilizer use and reduced grazing time. The use of updated and refined emission factors resulted in higher CH4 emissions and lower N2O emissions. On average, the overall emission was 36% higher with the refined method. Full accounting, including all direct and indirect emissions of CH4, N2O and CO2, increased the emission with 36% compared with the refined IPCC methodology. We conclude that the N surplus at farm level is a useful indicator of GHG emissions. A full accounting system as presented in this study may effectively enable farmers to address the issue of emissions of GHGs in their operational management decisions. Both approaches serve their own specific objectives: full accounting at the farm level to explore mitigation options, and the IPCC methods to report changes in GHG emissions at the national level.  相似文献   

18.
Wetlands are critically important to global climate change because of their role in modulating the release of atmospheric greenhouse gases (GHGs) carbon dioxide (CO2) and methane (CH4). Temperature plays a crucial role in wetland GHG emissions, while the general pattern for seasonal temperature dependencies of wetland CO2 and CH4 emissions is poorly understood. Here we show opposite seasonal temperature dependencies of CO2 and CH4 emissions by using 36,663 daily observations of simultaneous measurements of ecosystem-scale CO2 and CH4 emissions in 42 widely distributed wetlands from the FLUXNET-CH4 database. Specifically, the temperature dependence of CO2 emissions decreased with increasing monthly mean temperature, but the opposite was true for that of CH4 emissions. Neglecting seasonal temperature dependencies may overestimate wetland CO2 and CH4 emissions compared to the use of a year-based static and consistent temperature dependence parameter when only considering temperature effects. Our findings highlight the importance of incorporating the remarkable seasonality in temperature dependence into process-based biogeochemical models to predict feedbacks of wetland GHG emissions to climate warming.  相似文献   

19.
The application of organic materials to soil can recycle nutrients and increase organic matter in agricultural lands. Digestate can be used as a nutrient source for crop production but it has also been shown to stimulate greenhouse gas (GHG) emissions from amended soils. While edaphic factors, such as soil texture and pH, have been shown to be strong determinants of soil GHG fluxes, the impact of the legacy of previous management practices is less well understood. Here we aim to investigate the impact of such legacy effects and to contrast them against soil properties to identify the key determinants of soil GHG fluxes following digestate application. Soil from an already established field experiment was used to set up a pot experiment, to evaluate N2O, CH4 and CO2 fluxes from cattle‐slurry‐digestate amended soils. The soil had been treated with farmyard manure, green manure or synthetic N‐fertilizer, 18 months before the pot experiment was set up. Following homogenization and a preincubation stage, digestate was added at a concentration of 250 kg total N/ha eq. Soil GHG fluxes were then sampled over a 64 day period. The digestate stimulated emissions of the three GHGs compared to controls. The legacy of previous soil management was found to be a key determinant of CO2 and N2O flux while edaphic variables did not have a significant effect across the range of variables included in this experiment. Conversely, edaphic variables, in particular texture, were the main determinant of CH4 flux from soil following digestate application. Results demonstrate that edaphic factors and current soil management regime alone are not effective predictors of soil GHG flux response following digestate application. Knowledge of the site management in terms of organic amendments is required to make robust predictions of the likely soil GHG flux response following digestate application to soil.  相似文献   

20.
Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long‐term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long‐term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high‐temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (Rs), and metabolic quotient (qCO2) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N2O emissions, possibly due to accelerated N‐cycling at elevated soil temperature and to biochar‐induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar‐C into soil was estimated to offset warming‐induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N2O emissions under warming limit the GHG mitigation potential of biochar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号