首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the intensive study of antibiotic-induced bacterial permeabilization, its kinetics and molecular mechanism remain largely elusive. A new methodology that extends the concept of the live–dead assay in flow cytometry to real time-resolved detection was used to overcome these limitations. The antimicrobial activity of pepR was monitored in time-resolved flow cytometry for three bacterial strains: Escherichia coli (ATCC 25922), E. coli K-12 (CGSC Strain 4401) and E. coli JW3596-1 (CGSC Strain 11805). The latter strain has truncated lipopolysaccharides (LPS) in the outer membrane. This new methodology provided information on the efficacy of the antibiotics and sheds light on their mode of action at membrane-level. Kinetic data regarding antibiotic binding and lytic action were retrieved. Membrane interaction and permeabilization events differ significantly among strains. The truncation of LPS moieties does not hamper AMP binding but compromises membrane disruption and bacterial killing. We demonstrated the usefulness of time-resolved flow cytometry to study antimicrobial-induced permeabilization by collecting kinetic data that contribute to characterize the action of antibiotics directly on bacteria.  相似文献   

2.
Phagocytic cells ingest bacteria by phagocytosis and kill them efficiently inside phagolysosomes. The molecular mechanisms involved in intracellular killing and their regulation are complex and still incompletely understood. Dictyostelium discoideum has been used as a model to discover and to study new gene products involved in intracellular killing of ingested bacteria. In this study, we performed random mutagenesis of Dictyostelium cells and isolated a mutant defective for growth on bacteria. This mutant is characterized by the genetic inactivation of the lrrkA gene, which encodes a protein with a kinase domain and leucine‐rich repeats. LrrkA knockout (KO) cells kill ingested Klebsiella pneumoniae bacteria inefficiently. This defect is not additive to the killing defect observed in kil2 KO cells, suggesting that the function of Kil2 is partially controlled by LrrkA. Indeed, lrrkA KO cells exhibit a phenotype similar to that of kil2 KO cells: Intraphagosomal proteolysis is inefficient, and both intraphagosomal killing and proteolysis are restored upon exogenous supplementation with magnesium ions. Bacterially secreted folate stimulates intracellular killing in Dictyostelium cells, but this stimulation is lost in cells with genetic inactivation of kil2, lrrkA, or far1. Together, these results indicate that the stimulation of intracellular killing by folate involves Far1 (the cell surface receptor for folate), LrrkA, and Kil2. This study is the first identification of a signalling pathway regulating intraphagosomal bacterial killing in Dictyostelium cells.  相似文献   

3.
Efficient killing of mycobacteria by host macrophages depends on a number of mechanisms including production of reactive oxygen species (ROS) by the phagosomal NADPH oxidase, NOX2. Survival of pathogenic mycobacteria in the phagosome relies on the ability to control maturation of the phagosome such that it is biologically and chemically altered in comparison to phagosomes containing non‐pathogenic bacteria. In this study we show that the action of NOX2 to produce ROS in the mycobacterial phagosome is paradoxically dependent on a bacterial potassium transporter. We show that a Mycobacterium bovis BCG mutant (BCGΔkef), deficient in a Kef‐type K+ transporter, exhibits an increased intracellular survival phenotype in resting and activated macrophages, yet retains the ability to inhibit phagosome acidification, and does not show increased resistance to acidic conditions or ROS. Addition of a ROS scavenger replicates this phenotype in macrophages infected with wild‐type BCG, and the production of ROS by macrophages infected with BCGΔkef is substantially decreased compared with those infected with wild‐type BCG. Our results suggest that increased intracellular survival of BCGΔkef is mediated by inducing a decreased macrophage oxidative burst, and are consistent with Kef acting to alter the ionic contents of the phagosome and promoting NOX2 production of ROS.  相似文献   

4.
《Autophagy》2013,9(6):887-889
Reactive oxygen species (ROS) are emerging as regulators of autophagy in various cellular contexts. There are many cellular sources of ROS in eukaryotic cells. In phagocytes, the critical immune cells for host defense, the Nox2 NADPH oxidase generates ROS during phagocytosis and plays a central role in microbial killing. Toll-like receptors (TLRs) are important membrane microbial sensing receptors, which can activate Nox2,1 and were recently demonstrated to signal autophagy targeting of phagosomes to promote their maturation.2 Our recent study reveals that Nox2 activity and its generated ROS are key signals that induce TLR-activated autophagy of phagosomes. Our results provide the first evidence that ROS from the Nox2 NADPH oxidase can contribute to regulating autophagy in host defense against bacteria. The association of TLR, Nox2 and autophagy with inflammatory bowel disease (IBD) suggests a significant role of this antibacterial pathway in these diseases.  相似文献   

5.
Dictyostelium cells are professional phagocytes that avidly consume bacteria, their natural prey. Fluorescent probes have allowed us to monitor the initial steps in this process in living cells. Using probes that bind to F-actin, we have visualized the assembly and disassembly of actin filaments responsible for extending the phagocytic cup to engulf a bacterium, and, after the phagosome has sealed, the assembly of new actin filaments to propel the phagosome away from the site of uptake. Using bacteria expressing fluorescent proteins that are susceptible to proteolysis, we have monitored the loss of that fluorescent signal and the staining of the bacterial contents with neutral red, indicating permeabilization of the bacterial cell wall and acidification of the cytoplasm. We find that acidification occurs during a period of microtubule-based transport that promotes fusion of the phagosome with microtubule-associated acidic endosomes. Actin-powered phagosome internalization, transport of the phagosome along microtubules, proteolysis and acidification of bacterial contents, all typically occur within the first six or seven minutes after formation of the phagosome. Thus, tracking individual phagosomes has revealed that early steps in phagosome maturation occur much more rapidly than had been inferred from previous population studies.  相似文献   

6.
Aminoglycosides are one of the oldest classes of antimicrobials that are being used in current clinical practice, especially on multi-drug resistant Gram-negative pathogenic bacteria. However, the serious side effects at high dosage such as ototoxicity, neuropathy and nephrotoxicity limit their applications in clinical practice. Approaches that potentiate aminoglycoside killing could lower down their effective concentrations to a non-toxic dosage for clinical treatment. In this research, we screened a compound library and identified sanguinarine that acts synergistically with various aminoglycosides. By checkerboard and dynamical killing assay, we found that sanguinarine effectively potentiated aminoglycoside killing on diverse bacterial pathogens, including Escherichia coli, Acinetobacter baumannii, Klebsiella pneumonia and Pseudomonas aeruginosa. The mechanistic studies showed an elevated intracellular ROS and DNA oxidative level in the bacterial cells treated by a combination of sanguinarine with aminoglycosides. Furthermore, an enhanced level of sanguinarine was observed in bacteria in the presence of aminoglycosides, suggesting that aminoglycosides promote the uptake of sanguinarine. Importantly, sanguinarine was shown to promote the elimination of persister cells and established biofilm cells both in vivo and in vitro. Our study provides a novel insight for approaches to lower down the clinical dosages of aminoglycosides.  相似文献   

7.
Biosynthesis of hypochlorous acid, a potent antimicrobial oxidant, in phagosomes is one of the chief mechanisms employed by polymorphonuclear neutrophils to combat infections. This reaction, catalyzed by myeloperoxidase, requires chloride anion (Cl) as a substrate. Thus, Cl availability is a rate-limiting factor that affects neutrophil microbicidal function. Our previous research demonstrated that defective CFTR, a cAMP-activated chloride channel, present in cystic fibrosis (CF) patients leads to deficient chloride transport to neutrophil phagosomes and impaired bacterial killing. To confirm this finding, here we used RNA interference against this chloride channel to abate CFTR expression in the neutrophil-like cells derived from HL60 cells, a promyelocytic leukemia cell line, with dimethyl sulfoxide. The resultant CFTR deficiency in the phagocytes compromised their bactericidal capability, thereby recapitulating the phenotype seen in CF patient cells. The results provide further evidence suggesting that CFTR plays an important role in phagocytic host defense.  相似文献   

8.
M.tb is an intracellular pathogen which survives within the phagosomes of host macrophages by inhibiting their fusion with lysosomes. Here, it has been demonstrated that a lysosomal glycoprotein, CD63, is recruited to the majority of M.tb phagosomes, while RILP shows limited localization. This is consistent with the author's findings that CD63, but not RILP, is recruited to the phagosomes in macrophages expressing the dominant negative form of Rab7. These results suggest that M.tb phagosomes selectively fuse with endosomes and lysosomes to escape killing activity while acquiring nutrients.  相似文献   

9.
Myeloperoxidase is proposed to play a central role in bacterial killing by generating hypochlorous acid within neutrophil phagosomes. However, it has yet to be demonstrated that these inflammatory cells target hypochlorous acid against bacteria inside phagosomes. In this investigation, we treated Staphylococcus aureus with varying concentrations of reagent hypochlorous acid and found that even at sublethal doses, it converted some tyrosine residues in their proteins to 3-chlorotyrosine and 3,5-dichlorotyrosine. To determine whether or not ingested bacteria were exposed to hypochlorous acid in neutrophil phagosomes, we labeled their proteins with [(13)C(6)]tyrosine and used gas chromatography with mass spectrometry to identify the corresponding chlorinated isotopes after the bacteria had been phagocytosed. Chlorinated tyrosines were detected in bacterial proteins 5 min after phagocytosis and reached levels of approximately 2.5/1000 mol of tyrosine at 60 min. Inhibitor studies revealed that chlorination was dependent on myeloperoxidase. Chlorinated neutrophil proteins were also detected and accounted for 94% of total chlorinated tyrosine residues formed during phagocytosis. We conclude that hypochlorous acid is a major intracellular product of the respiratory burst. Although some reacts with the bacteria, most reacts with neutrophil components.  相似文献   

10.
Macrophages are critical effectors of the early innate response to bacteria in tissues. Phagocytosis and killing of bacteria are interrelated functions essential for bacterial clearance but the rate‐limiting step when macrophages are challenged with large numbers of the major medical pathogen Staphylococcus aureus is unknown. We show that macrophages have a finite capacity for intracellular killing and fail to match sustained phagocytosis with sustained microbial killing when exposed to large inocula of S. aureus (Newman, SH1000 and USA300 strains). S. aureus ingestion by macrophages is associated with a rapid decline in bacterial viability immediately after phagocytosis. However, not all bacteria are killed in the phagolysosome, and we demonstrate reduced acidification of the phagolysosome, associated with failure of phagolysosomal maturation and reduced activation of cathepsin D. This results in accumulation of viable intracellular bacteria in macrophages. We show macrophages fail to engage apoptosis‐associated bacterial killing. Ultittop mately macrophages with viable bacteria undergo cell lysis, and viable bacteria are released and can be internalized by other macrophages. We show that cycles of lysis and reuptake maintain a pool of viable intracellular bacteria over time when killing is overwhelmed and demonstrate intracellular persistence in alveolar macrophages in the lungs in a murine model.  相似文献   

11.
Staphylococcus aureus is a Gram‐positive human pathogen that is readily internalized by professional phagocytes such as macrophages and neutrophils but also by non‐professional phagocytes such as epithelial or endothelial cells. Intracellular bacteria have been proposed to play a role in evasion of the innate immune system and may also lead to dissemination within migrating phagocytes. Further, S. aureus efficiently lyses host cells with a battery of cytolytic toxins. Recently, phenol‐soluble modulins (PSM) have been identified to comprise a genus‐specific family of cytolytic peptides. Of these the PSMα peptides have been implicated in killing polymorphonuclear leucocytes after phagocytosis. We questioned if the peptides were active in destroying endosomal membranes to avoid lysosomal killing of the pathogen and monitored integrity of infected host cell endosomes by measuring the acidity of the intracellular bacterial microenvironment via flow cytometry and by a reporter recruitment technique. Isogenic mutants of the methicillin‐resistant S. aureus (MRSA) strains USA300 LAC, USA400 MW2 as well as the strongly cytolytic methicillin‐sensitive strain 6850 were compared with their respective wild type strains. In all three genetic backgrounds, PSMα mutants were unable to escape from phagosomes in non‐professional (293, HeLa, EAhy.926) and professional phagocytes (THP‐1), whereas mutants in PSMβ and δ‐toxin as well as β‐toxin, phosphatidyl inositol‐dependent phospholipase C and Panton Valentine leucotoxin escaped with efficiencies of the parental strains. S. aureus replicated intracellularly only in presence of a functional PSMα operon thereby illustrating that bacteria grow in the host cell cytoplasm upon phagosomal escape.  相似文献   

12.
The intracellular growth kinetics ofMycobacterium xenopi was studied in the murine J-774 macrophage cell line model. During the initial 4 days of infection, the bacilli divided about every 33 h. Electron microscopy of infected macrophages showed that bacteria inside phagosomes were surrounded by a protective electron-transparent zone (ETZ). This model was used for comparing the extracellular and intracellular activities of the following drugs: pristinamycin (PRISTINA), isoniazid (INH), clofazimine (CLOFA), rifabutin (=ansamycin; ANSA), rifampicine (RIFA), streptomycin (SM), ethambutol (EMB), and five fluoroquinolones, namely, ciprofloxacin (CIPRO), ofloxacin (OFLO), pefloxacin (PEFLO), enoxacin (ENOX) and norfloxacin (NORFLO). All the drugs were tested within their obtainable serum level concentrations in man. Under these conditions, CLOFA, SM, CIPRO, and OFLO were highly active against intracellularly growingM. xenopi, INH and RIFA were moderately active, whereas ANSA, PRISTINA, EMB, PEFLO, ENOX, and NORFLO were only growth inhibiting. The comparison of these data with extracellular activities of the same drugs underlined the discrepancies observed in test-tube drug activity evaluation and its correlation with results of chemotherapy in patients in whom the drug has essentially an intracellular bacterial killing role.  相似文献   

13.
《Autophagy》2013,9(9):957-965
Autophagy plays a significant role in innate and adaptive immune responses to microbial infection. Some pathogenic bacteria have developed strategies to evade killing by host autophagy. These include the use of ‘camouflage’ proteins to block targeting to the autophagy pathway and the use of pore-forming toxins to block autophagosome maturation. However, general inhibition of host autophagy by bacterial pathogens has not been observed to date. Here we demonstrate that bacterial cAMP-elevating toxins from B. anthracis and V. cholera can inhibit host anti-microbial autophagy, including autophagic targeting of S. Typhimurium and latex bead phagosomes. Autophagy inhibition required the cAMP effector protein kinase A. Formation of autophagosomes in response to rapamycin and the endogenous turnover of peroxisomes was also inhibited by cAMP-elevating toxins. These findings demonstrate that cAMP-elevating toxins, representing a large group of bacterial virulence factors, can inhibit host autophagy to suppress immune responses and modulate host cell physiology.  相似文献   

14.
Antimicrobial‐peptide‐based therapies could represent a reliable alternative to overcome antibiotic resistance, as they offer potential advantages such as rapid microbicidal activity and multiple activities against a broad spectrum of bacterial pathogens. Three synthetic antimicrobial peptides (AMPs), AMP72, AMP126, and also AMP2041, designed by using ad hoc screening software developed in house, were synthesized and tested against nine reference strains. The peptides showed a partial β‐sheet structure in 10‐mM phosphate buffer. Low cytolytic activity towards both human cell lines (epithelial, endothelial, and fibroblast) and sheep erythrocytes was observed for all peptides. The antimicrobial activity was dose dependent with a minimum bactericidal concentration (MBC) ranging from 0.17 to 10.12 μM (0.4–18.5 µg/ml) for Gram‐negative and 0.94 to 20.65 μM (1.72‐46.5 µg/ml) for Gram‐positive bacteria. Interestingly, in high‐salt environment, the antibacterial activity was generally maintained for Gram‐negative bacteria. All peptides achieved complete bacterial killing in 20 min or less against Gram‐negative bacteria. A linear time‐dependent membrane permeabilization was observed for the tested peptides at 12.5 µg/ml. In a medium containing Mg2+ and Ca2+, the peptide combination with EDTA restores the antimicrobial activity particularly for AMP2041. Moreover, in combination with anti‐infective agents (quinolones or aminoglycosides) known to bind divalent cation, AMP126 and AMP2041 showed additive activity in comparison with colistin. Our results suggest the following: (i) there is excellent activity against Gram‐negative bacteria, (ii) there is low cytolytic activity, (iii) the presence of a chelating agent restores the antimicrobial activity in a medium containing Mg2+ and Ca2+, and (iv) the MBC value of the combination AMPs–conventional antibiotics was lower than the MBC of single agents alone. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Curcumin, an important constituent of turmeric, is known for various biological activities, primarily due to its antioxidant mechanism. The present study focused on the antibacterial activity of curcumin I, a significant component of commercial curcumin, against four genera of bacteria, including those that are Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa). These represent prominent human pathogens, particularly in hospital settings. Our study shows the strong antibacterial potential of curcumin I against all the tested bacteria from Gram-positive as well as Gram-negative groups. The integrity of the bacterial membrane was checked using two differential permeabilization indicating fluorescent probes, namely, propidium iodide and calcein. Both the membrane permeabilization assays confirmed membrane leakage in Gram-negative and Gram-positive bacteria on exposure to curcumin I. In addition, scanning electron microscopy and fluorescence microscopy were employed to confirm the membrane damages in bacterial cells on exposure to curcumin I. The present study confirms the broad-spectrum antibacterial nature of curcumin I, and its membrane damaging property. Findings from this study could provide impetus for further research on curcumin I regarding its antibiotic potential against rapidly emerging bacterial pathogens.  相似文献   

16.
Non-pathogenic mycobacteria such us Mycobacterium smegmatis reside in macrophages within phagosomes that fuse with late endocytic/lysosomal compartments. This sequential fusion process is required for the killing of non-pathogenic mycobacteria by macrophages. Porins are proteins that allow the influx of hydrophilic molecules across the mycobacterial outer membrane. Deletion of the porins MspA, MspC and MspD significantly increased survival of M. smegmatis in J774 macrophages. However, the mechanism underlying this observation is unknown. Internalization of wild-type M. smegmatis (SMR5) and the porin triple mutant (ML16) by macrophages was identical indicating that the viability of the porin mutant in vivo was enhanced. This was not due to effects on phagosome trafficking since fusion of phagosomes containing the mutant with late endocytic compartments was unaffected. Moreover, in ML16-infected macrophages, the generation of nitric oxide (NO) was similar to the wild type-infected cells. However, ML16 was significantly more resistant to the effects of NO in vitro compared to SMR5. Our data provide evidence that porins render mycobacteria vulnerable to killing by reactive nitrogen intermediates within phagosomes probably by facilitating uptake of NO across the mycobacterial outer membrane.  相似文献   

17.
18.
Listeria monocytogenes is a bacterial pathogen that can escape the phagosome and replicate in the cytosol of host cells during infection. We previously observed that a population (up to 35%) of L. monocytogenes strain 10403S colocalize with the macroautophagy marker LC3 at 1 h postinfection. This is thought to give rise to spacious Listeria-containing phagosomes (SLAPs), a membrane-bound compartment harboring slow-growing bacteria that is associated with persistent infection. Here, we examined the host and bacterial factors that mediate LC3 recruitment to bacteria at 1 h postinfection. At this early time point, LC3+ bacteria were present within single-membrane phagosomes that are LAMP1+. Protein ubiquitination is known to play a role in targeting cytosolic L. monocytogenes to macroautophagy. However, we found that neither protein ubiquitination nor the ubiquitin-binding adaptor SQSTM1/p62 are associated with LC3+ bacteria at 1 h postinfection. Reactive oxygen species (ROS) production by the CYBB/NOX2 NADPH oxidase was also required for LC3 recruitment to bacteria at 1 h postinfection and for subsequent SLAP formation. Diacylglycerol is an upstream activator of the CYBB/NOX2 NADPH oxidase, and its production by both bacterial and host phospholipases was required for LC3 recruitment to bacteria. Our data suggest that the LC3-associated phagocytosis (LAP) pathway, which is distinct from macroautophagy, targets L. monocytogenes during the early stage of infection within host macrophages and allows establishment of an intracellular niche (SLAPs) associated with persistent infection.  相似文献   

19.
The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by the influx of copper ions into the cells, but the exact mechanism is not fully understood. This study showed that the kinetics of contact killing of copper surfaces depended greatly on the amount of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper surface corrosion rates were determined from electrochemical polarization tests using the Stern–Geary method and revealed decreased corrosion rates with benzotriazole and thermal oxide coating. Copper ion-resistant E. coli and E. faecium cells suspended in 0.8% NaCl showed prolonged survival rates on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing.  相似文献   

20.

Background

New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase components. The resulting inability to mount an effective intracellular respiratory burst makes these cells more dependent on other mechanisms when killing internalized bacteria.

Methodology/Principal Findings

In this work phagocytosis and phagosome-related responses of ATRA-differentiated HL-60 cells were compared to those earlier described in human neutrophils. We show that intracellular survival of wild-type S. pyogenes bacteria in HL-60 cells is accompanied by inhibition of azurophilic granule–phagosome fusion. A mutant S. pyogenes bacterium, deficient in M-protein expression, is, on the other hand, rapidly killed in phagosomes that avidly fuse with azurophilic granules.

Conclusions/Significance

The current data extend our previous findings by showing that a system lacking in oxidase involvement also indicates a link between inhibition of azurophilic granule fusion and the intraphagosomal fate of S. pyogenes bacteria. We propose that differentiated HL-60 cells can be a useful tool to study certain aspects of neutrophil phagosome maturation, such as azurophilic granule fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号