首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among various scenarios that attempt to explain how life arose, the RNA world is currently the most widely accepted scientific hypothesis among biologists. However, the RNA world is logistically implausible and doesn’t explain how translation arose and DNA became incorporated into living systems. Here I propose an alternative hypothesis for life’s origin based on cooperation between simple nucleic acids, peptides and lipids. Organic matter that accumulated on the prebiotic Earth segregated into phases in the ocean based on density and solubility. Synthesis of complex organic monomers and polymerization reactions occurred within a surface hydrophilic layer and at its aqueous and atmospheric interfaces. Replication of nucleic acids and translation of peptides began at the emulsified interface between hydrophobic and aqueous layers. At the core of the protobiont was a family of short nucleic acids bearing arginine’s codon and anticodon that added this amino acid to pre-formed peptides. In turn, the survival and replication of nucleic acid was aided by the peptides. The arginine-enriched peptides served to sequester and transfer phosphate bond energy and acted as cohesive agents, aggregating nucleic acids and keeping them at the interface.  相似文献   

2.
It has been postulated that the oceans on early Earth had a salinity of 1.5 to 2 times the modern value and a pH between 4 and 10. Moreover, the presence of the banded iron formations shows that Fe+2 was present in significant concentrations in the primitive oceans. Assuming the hypotheses above, in this work we explore the effects of Fe+2 and other ions in the generation of biomolecules in prebiotic simulation experiments using spark discharges and aqueous aerosols. These aerosols have been prepared using different sources of Fe+2, such as FeS, FeCl2 and FeCO3, and other salts (alkaline and alkaline earth chlorides and sodium bicarbonate at pH = 5.8). In all these experiments, we observed the formation of some amino acids, carboxylic acids and heterocycles, involved in biological processes. An interesting consequence of the presence of soluble Fe+2 was the formation of Prussian Blue, Fe4[Fe(CN)6]3, which has been suggested as a possible reservoir of HCN in the initial prebiotic conditions on the Earth.  相似文献   

3.
Existing data suggest that an early circumstellar preplanetary disk was the most likely location for primary abiogenic synthesis of prebiotic organic matter from simple molecules along with the “RNA world” and the origin of life. This paper discusses the stages of self-organization that have resulted in the Earth’s modern biosphere, and the relationships between astrophysical and paleontological events in evolution.  相似文献   

4.
Sea ice occurs abundantly at the polar caps of the Earth and, probably, of many other planets. Its static and dynamic properties that may be important for prebiotic and early biotic reactions are described. It concentrates substrates and has many features that are important for catalytical actions. We propose that it provided optimal conditions for the early replication of nucleic acids and the RNA world. We repeated a famous prebiotic experiment, the poly-uridylic acid-instructed synthesis of polyadenylic acid from adenylic acid imidazolides in artificial sea ice, simulating the dynamic variability of real sea ice by cyclic temperature variation. Poly(A) was obtained in high yield and reached nucleotide chain lengths up to 400 containing predominantly 3′→ 5′ linkages.  相似文献   

5.
The demonstration that ribosomal peptide synthesis is a ribozyme-catalyzed reaction makes it almost certain that there was once an RNA World. The central problem for origin-of-life studies, therefore, is to understand how a protein-free RNA World became established on the primitive Earth. We first review the literature on the prebiotic synthesis of the nucleotides, the nonenzymatic synthesis and copying of polynucleotides, and the selection of ribozyme catalysts of a kind that might have facilitated polynucleotide replication. This leads to a brief outline of the Molecular Biologists' Dream, an optimistic scenario for the origin of the RNA World. In the second part of the review we point out the many unresolved problems presented by the Molecular Biologists' Dream. This in turn leads to a discussion of genetic systems simpler than RNA that might have “invented” RNA. Finally, we review studies of prebiotic membrane formation.  相似文献   

6.
The distributions of amino acids at most-conserved sites nearest catalytic/active centers (C/AC) in 4,645 sequences of ten enzymes of the glycolytic Embden-Meyerhof-Parnas pathway in Archaea, Bacteria and Eukaryota are similar to the proposed temporal order of their appearance on Earth. Glycine, isoleucine, leucine, valine, glutamic acid and possibly lysine often described as prebiotic, i.e., existing or occurring before the emergence of life, were localized in positional and conservational defined aggregations in all enzymes of all Domains. The distributions of all 20 biologic amino acids in most-conserved sites nearest their C/ACs were quite different either from distributions in sites less-conserved and further from their C/ACs or from all amino acids regardless of their position or conservation. The major concentrations of glycine, e.g., perhaps the earliest prebiotic amino acid, occupies ≈16 % of all the most-conserved sites within a volume of ≈7–8 Å radius from their C/ACs and decreases linearly towards the molecule’s peripheries. Spatially localized major concentrations of isoleucine, leucine and valine are in the mid-conserved and mid-distant sites from their C/ACs in protein interiors. Lysine and glutamic acid comprise ≈25–30 % of all amino acids within an irregular volume bounded by ≈24–28 Å radii from their C/ACs at the most-distant least-conserved sites. The unreported characteristics of these amino acids: their spatially and conservationally identified concentrations in Archaea, Bacteria and Eukaryota, suggest some common structural organization of glycolytic enzymes that may be relevant to their evolution and that of other proteins. We discuss our data in relation to enzyme evolution, their reported prebiotic putative temporal appearances on Earth, abundances, biological “cost”, neighbor-sequence preferences or “ordering” and some thermodynamic parameters.  相似文献   

7.
The reaction sequences of central metabolism, glycolysis and the pentose phosphate pathway provide essential precursors for nucleic acids, amino acids and lipids. However, their evolutionary origins are not yet understood. Here, we provide evidence that their structure could have been fundamentally shaped by the general chemical environments in earth's earliest oceans. We reconstructed potential scenarios for oceans of the prebiotic Archean based on the composition of early sediments. We report that the resultant reaction milieu catalyses the interconversion of metabolites that in modern organisms constitute glycolysis and the pentose phosphate pathway. The 29 observed reactions include the formation and/or interconversion of glucose, pyruvate, the nucleic acid precursor ribose‐5‐phosphate and the amino acid precursor erythrose‐4‐phosphate, antedating reactions sequences similar to that used by the metabolic pathways. Moreover, the Archean ocean mimetic increased the stability of the phosphorylated intermediates and accelerated the rate of intermediate reactions and pyruvate production. The catalytic capacity of the reconstructed ocean milieu was attributable to its metal content. The reactions were particularly sensitive to ferrous iron Fe(II), which is understood to have had high concentrations in the Archean oceans. These observations reveal that reaction sequences that constitute central carbon metabolism could have been constrained by the iron‐rich oceanic environment of the early Archean. The origin of metabolism could thus date back to the prebiotic world.  相似文献   

8.
Molecules which store genetic information (i.e. RNA and DNA) are central to all life on Earth. The formation of these complex molecules, and ultimately life, required specific conditions, including the synthesis and concentration of precursors (nucleotides), the joining of these monomers into larger molecules (polynucleotides), their protection in critical conditions (like those probably existing in primeval habitats), and the expression of the biological potential of the informational molecule (its capacity to multiply and evolve). Determining how these steps occurred and how the earliest genetic molecules originated on Earth is a problem that is far from being resolved. Recent observations on the polymerization of nucleotides on clay surfaces and on the resistance of clay-adsorbed nucleic acids to environmental degradation suggest that clay minerals could have acted as a resting place for the formation and preservation of prebiotic genetic molecules, whatever they were, and for the self-organization of the first auto-replicating systems. In the present work, the molecular characteristics and biological activity of different nucleic acids (DNA, RNAs) adsorbed/bound on clay minerals are discussed in the light of their possible role in ancestral environments.  相似文献   

9.
How life can emerge from non-living matter is one of the fundamental mysteries of the universe. A bottom-up approach to this problem focuses on the potential chemical precursors of life, in particular the nature of the first replicative molecules. Such thinking has led to the currently most popular idea: that an RNA-like molecule played a central role as the first replicative and catalytic molecule. Here, we review an alternative hypothesis that has recently gained experimental support, focusing on the role of amyloidogenic peptides rather than nucleic acids, in what has been by some termed “the amyloid-world” hypothesis. Amyloids are well-ordered peptide aggregates that have a fibrillar morphology due to their underlying structure of a one-dimensional crystal-like array of peptides in a β-strand conformation. While they are notorious for their implication in several neurodegenerative diseases including Alzheimer's disease, amyloids also have many biological functions. In this review, we will elaborate on the following properties of amyloids in relation to their fitness as a prebiotic entity: they can be formed by very short peptides with simple amino acids sequences; as aggregates they are more chemically stable than their isolated component peptides; they can possess diverse catalytic activities; they can form spontaneously during the prebiotic condensation of amino acids; they can act as templates in their own chemical replication; they have a structurally repetitive nature that enables them to interact with other structurally repetitive biopolymers like RNA/DNA and polysaccharides, as well as with structurally repetitive surfaces like amphiphilic membranes and minerals.  相似文献   

10.
Modern cells present no signs of a putative prebiotic RNA world. However, RNA coding is not a sine qua non for the accumulation of catalytic polypeptides. Thus, cellular proteins spontaneously fold into active structures that are resistant to proteolysis. The law of mass action suggests that binding domains are stabilized by specific interactions with their substrates. Random polypeptide synthesis in a prebiotic world has the potential to initially produce only a very small fraction of polypeptides that can fold spontaneously into catalytic domains. However, that fraction can be enriched by proteolytic activities that destroy the unfolded polypeptides and regenerate amino acids that can be recycled into polypeptides. In this open system scenario the stable domains that accumulate and the chemical environment in which they are accumulated are linked through self coding of polypeptide structure. Such open polypeptide systems may have been the precursors to the cellular ribonucleoprotein (RNP) world that evolved subsequently.  相似文献   

11.
The essence of the inversion concept of the origin of life can be narrowed down to the following theses: (1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; (2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance “free energy contribution entropy contribution” (as well as “information contribution informational entropy contribution”), from negative to positive values. At the inversion moment, the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this concept, the origin-of-life process on the early Earth took place in oscillating hydrothermal medium. The process was taking two successive stages: (1) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids, and simple amino acids, or their precursors, within the temperature interval of 100–300?°C (prebiotic stage); (2) nonspontaneous synthesis of sugars, ATP, and nucleic acids started at the inversion moment under the temperature 70–100?°C (biotic stage). Macro and microfluctuations of thermodynamic and physicochemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems (Kompanichenko, 2012). Conditions in potential hydrothermal medium for the origin of life were explored on the examples of several hydrothermal systems in Kamchatka peninsula. Temperature of water in hot springs ranges from?<?60 to 98?°C, in the bore holes water-steam temperature varies from?<?100 to 239?°C, and pressure from?<?1 to 35 bars at the wellheads; pH is within the interval 2.5–9.0. Pressure monitoring at the depth 950?meters in the borehole No. 30 (Mutnovsky field) has revealed high-amplitude (up to 1–2 bars) irregular macrofluctuations and low-amplitude quite regular microoscillations of pressure (amplitudes 0.1–0.3 bars). Hydrocarbons, lipid precursors, and simple amino acids are available in the fluid. The lifeless condensate of water-steam mixture (temperature 108–175?°C) contains aromatic hydrocarbons, n-alkanes, ketons, alcohols, and aldehydes. In addition to those, cycloalkanes, alkenes, dietoxyalkanes, naphtenes, fatty acids, ethyl ethers of fatty acids, and monoglycerides have been detected in hot solutions inhabited by thermophiles and hyperthermophiles (temperature 70–98?°C). According to Mukhin et al. (1979), glycine of probably abiotic origination was detected in lifeless condensate.  相似文献   

12.
The general framework of the origin of life on Earth is outlined, emphasizing that the so‐called prebiotic ‘RNA world’ is as yet on shaky scientific ground, and that one should any way ask the question of the structure of the first protocellular compartments capable of the initial forms of metabolism. This question is the basis of the research project on the minimal cells, containing the minimal and sufficient complexity capable of leading to life. Such research is briefly summarized, highlighting experiments with liposome‐based semisynthetic cells which are capable of ribosomal protein synthesis with a very minimal number of enzymes. The most recent finding in this area of research is the unexpected observation that the formation and closure of liposomes in situ acts as an attractor for the solute molecules in solution, bringing about a very high local concentration in some of the liposomes. It is argued that this spontaneous overcrowding, which permits reactions which are not possible in the original dilute solution, might be the origin of cellular metabolism for the origin of life on Earth.  相似文献   

13.
This model proposes that the origin of life on Earth occurred as a result of a process of alteration of the chemical composition of prebiotic macromolecules. The stability of organic compounds assembled into polymers generally exceeded the stability of the same compounds as free monomers. This difference in stability stimulated accumulation of prebiotic macromolecules. The prebiotic circulation of matter included constant formation and decomposition of polymers. Spontaneous chemical reactions between macromolecules with phosphodiester backbones resulted in a non-Darwinian selection for chemical stability, while formation of strong structures provided an advantage in the struggle for stability. Intermolecular structures between nucleotide-containing polymers were further stabilized by occasional acquisition of complementary nucleotides. Less stable macromolecules provided the source of nucleotides. This process resulted first in the enrichment of nucleotide content in prebiotic polymers, and subsequently in the accumulation of complementary oligonucleotides. Finally, the role of complementary copy molecules changed from the stabilization of the original templates to the de novo production of template-like molecules. I associate this stage with the origin of life in the form of cell-free molecular colonies. Original life acquired ready-to-use substrates from constantly forming prebiotic polymers. Metabolism started to develop when life began to consume more substrates than the prebiotic cycling produced. The developing utilization of non-polymeric compounds stimulated the formation of the first membrane-enveloped cells that held small soluble molecules. Cells “digested” the nucleotide-containing prebiotic macromolecules to nucleotide monomers and switched the mode of replication to the polymerization of nucleotide triphosphates.  相似文献   

14.
The incorporation of alternative functional components into nucleic acids can provide insight into what molecular features are necessary for an informational macromolecule to be successful. It can also provide a means to improve particular physical characteristics of nucleic acids for diagnostic and therapeutic purposes, or probe mechanisms. By testing the fitness of nucleic acid-like molecules derived by structural permutations of RNA, it may also prove possible to trace a path from simple prebiotic precursors to biotic molecules. This article describes the applications of 2',5'-phosphodiester linked, zwitterionic, and base-permuted nucleic acid derivatives.  相似文献   

15.
16.
The halophile environment has a number of compelling aspects with regard to the origin of structured polypeptides (i.e., proteogenesis) and, instead of a curious niche that living systems adapted into, the halophile environment is emerging as a candidate “cradle” for proteogenesis. In this viewpoint, a subsequent halophile‐to‐mesophile transition was a key step in early evolution. Several lines of evidence indicate that aromatic amino acids were a late addition to the codon table and not part of the original “prebiotic” set comprising the earliest polypeptides. We test the hypothesis that the availability of aromatic amino acids could facilitate a halophile‐to‐mesophile transition by hydrophobic core‐packing enhancement. The effects of aromatic amino acid substitutions were evaluated in the core of a “primitive” designed protein enriched for the 10 prebiotic amino acids (A,D,E,G,I,L,P,S,T,V)—having an exclusively prebiotic core and requiring halophilic conditions for folding. The results indicate that a single aromatic amino acid substitution is capable of eliminating the requirement of halophile conditions for folding of a “primitive” polypeptide. Thus, the availability of aromatic amino acids could have facilitated a critical halophile‐to‐mesophile protein folding adaptation—identifying a selective advantage for the incorporation of aromatic amino acids into the codon table.  相似文献   

17.
Important prebiotic organic compounds might have been transported to Earth in dust or produced in vapor clouds resulting from atmospheric explosions or impacts of comets. These compounds coalesced in the upper atmosphere with particles ejected from craters formed by impacts of large objects. Coalescence during exposure to UV radiation concentrated organic monomers and enhanced formation of oligomers. Continuing coalescence added material to the growing particles and shielded prebiotic compounds from prolonged UV radiation. These particles settled into the lower atmosphere where they were scavenged by rain. Aqueous chemistry and evaporation of raindrops containing nomomers in high temperature regions near the Earth's surface also promoted continued formation of oligomers. Finally, these oligomers were deposited in the oceans where continued prebiotic evolution led to the most primitive cell. Results of our studies suggest that prebiotic chemical evolution may be an inevitable consequence of impacting comets during the late accretion of planets anywhere in the universe if oceans remained on those planetary surfaces.  相似文献   

18.
The efficiency of Escherichia coli nucleic acids samples: covalently closed circular DNA, linear chromosomal DNA, total RNA degradation mediated by the action of high oxygen pressure; hydrochloric hydroxylamine in alkaline conditions in the presence of cooper ions and in analogous conditions without cooper ions was studied. The nativity of nucleic acids was determined by means of fluorometric analysis of nucleic acids/ethidium bromide complexes. Experiments revealed, that the destructive effect of active oxygen species decreased in the following order: NH2OH.HCl in alkaline conditions in the presence of copper ions-NH2.HCl in alkaline conditions--high pressure of pure oxygen. The stability of nucleic acids decreased in the following order: covalently closed circular DNA-linear DNA-RNA.  相似文献   

19.
The essence of the inversion concept of the origin of life can be narrowed down to the following theses: 1) thermodynamic inversion is the key transformation of prebiotic microsystems leading to their transition into primary forms of life; 2) this transformation might occur only in the microsystems oscillating around the bifurcation point under far-from-equilibrium conditions. The transformation consists in the inversion of the balance "free energy contribution / entropy contribution", from negative to positive values. At the inversion moment the microsystem radically reorganizes in accordance with the new negentropy (i.e. biological) way of organization. According to this approach, the origin-of-life process on the early Earth took place in the fluctuating hydrothermal medium. The process occurred in two successive stages: a) spontaneous self-assembly of initial three-dimensional prebiotic microsystems composed mainly of hydrocarbons, lipids and simple amino acids, or their precursors, within the temperature interval of 100-300°C (prebiotic stage); b) non-spontaneous synthesis of sugars, ATP and nucleic acids started at the inversion moment under the temperature 70-100°C (biotic stage). Macro- and microfluctuations of thermodynamic and physico-chemical parameters able to sustain this way of chemical conversion have been detected in several contemporary hydrothermal systems. A minimal self-sufficient unit of life on the early Earth was a community of simplest microorganisms (not a separate microorganism).  相似文献   

20.
Scanning tunneling microscopy and chromatography experiments exploring the potential templating properties of nucleic acid bases adsorbed to the surface of crystalline graphite, revealed that the interactions of amino acids with the bare crystal surface are significantly modulated by the prior adsorption of adenine and hypoxanthine. These bases are the coding elements of a putative purine-only genetic alphabet and the observed effects are different for each of the bases. Such mapping between bases and amino acids provides a coding mechanism. These observations demonstrate that a simple pre-RNA amino acid discrimination mechanism could have existed on the prebiotic Earth providing critical functionality for the origin of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号