首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Besides reticulol, the strain MD611-C6 produced two compounds which inhibited cyclic nucleotide phosphodiesterases [EC 3.1.4. C.] These substances were isolated and their structures were elucidated to be 8-hydroxy-6, 7-dimethoxy-3-hydroxymethyIisocoumarin (II) and 6, 8-dihyroxy-7-methoxy-3-hydroxymethylisocoumarin (III). Concentrations of II and III for 50% inhibition of cAMP phosphodiesterase were 3.97 × 10?4m and 1.26 × 10?8m, respectively.  相似文献   

2.
Cytosolic purine nucleoside phosphorylase (PNPase) is a well known, and described enzyme which exists in a variety of organisms, both procaryotic and eucaryotic. More recently this enzyme was found in bovine liver mitochondria. The mitochondrial purine nucleoside phosphorylase was purified 63 fold and has a molecular weight of 48–60 kD. From Lineweaver-Burk plots apparent Km's of 23M for inosine, 42 M for deoxyinosine, 40 M for phosphate, 2 M for hypoxanthine, and 163 M for ribose-1-phosphate were calculated. Both 8-aminoguanosine (Ki=0.5 M) and araG (Ki=381 M) are inhibitors of the enzyme. The protein's isoelectric point (pI) was calculated at a pH of 4.2. Preliminary immunological work showed no cross-reactivity between epitopes on the mitochondrial protein and those on PNPase from human erythrocytes. The apparent Km's calculated for the mitochondrial enzyme are,with the exception of that using hypoxanthine, within the range commonly associated with Km's from the cytosolic species. The mitochondrial enzyme's molecular weight and pI are less than normally described. The enzyme's isolation from mitochondria, together with several unique characteristics, suggest that it is a separate protein from that found in the cytosol.  相似文献   

3.
    
Land plants use diverse hormones to coordinate their growth, development and responses against biotic and abiotic stresses. Salicylic acid (SA) is an essential hormone in plant immunity, with its levels and signaling tightly regulated to ensure a balanced immune output. Over the past three decades, molecular genetic analyses performed primarily in Arabidopsis have elucidated the biosynthesis and signal transduction pathways of key plant hormones, including abscisic acid, jasmonic acid, ethylene, auxin, cytokinin, brassinosteroids, and gibberellin. Crosstalk between different hormones has become a major focus in plant biology with the goal of obtaining a full picture of the plant hormone signaling network. This review highlights the roles of SA in plant immunity and summarizes our current understanding of the pairwise interactions of SA with other major plant hormones. The complexity of these interactions is discussed, with the hope of stimulating research to address existing knowledge gaps in hormone crosstalk, particularly in the context of balancing plant growth and defense.  相似文献   

4.
Reversible hormone conjugations in plants may represent physiologically and biochemically essential pathways in the regulation of endogenous levels of biologically active pools of phytohormones. Conjugates of auxins, gibberellins, and cytokinins are now widely recognized as serving a storage function for rapid (im)mobilization of these phytohormones, depending on a variety of environmental, developmental, and physiological factors. The significance of conjugates of other phytohormones (abscisic acid, ethylene, jasmonic acid, and salicylic acid) is less well understood. Recent developments in studies on phytohormone conjugation, involving both biochemical and molecular biology approaches, are presented here. The nature and possible functions of the conjugates are discussed. Conjugates of other compounds (e.g., anthranilate-glucosides) are also known (for review, see Hösel, 1981). However, it is not known whether these compounds have a signaling function.  相似文献   

5.
    
In previous communications we have demonstrated that the subunits of normal human erythrocyte purine nucleoside phosphorylase can be resolved into four major (1–4) and two minor (1p and 2p) components with the same molecular weight but different apparent isoelectric points (and net ionic charge). The existence of subunits with different charge results in a complex isoelectric focusing pattern of the native erythrocytic enzyme. In contrast, the isoelectric focusing pattern of the native enzyme obtained from cultured human fibroblasts is simpler. The multiple native isoenzymes obtained from human erythrocytes and human brain have isoelectric points ranging from 5.0 to 6.4 and from 5.2 to 5.8, respectively, whereas cultured human fibroblasts have two major native isoenzymes with apparent isoelectric points of 5.1 and 5.6.Purine nucleoside phosphorylase has been purified at least a hundredfold from 35S-labeled cultured human fibroblasts. A two-dimensional electrophoretic analysis of the denatured purified normal fibroblast enzyme revealed that it consists mainly of subunit 1 (90%) with small amounts of subunits 2 (10%) and 3 (1%). This accounts for the observed differences between the native isoelectric focusing and the electrophoretic patterns of the erythrocyte and fibroblast enzymes. The purine nucleoside phosphorylase subunit 1 is detectable in the autoradiogram from a two-dimensional electrophoretic analysis of a crude, unpurified extract of 35S-labeled cultured normal human fibroblasts. The fibroblast phosphorylase coincides with the erythrocytic subunit 1 of the same enzyme, and the cultured fibroblasts of a purine nucleoside phosphorylase deficient patient (patient I) lack this protein component, genetically confirming the identity of the purine nucleoside phosphorylase subunit in cultured fibroblasts.This work was supported by a grant from the National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, United States Public Health Service. L. J. G. is supported by a fellowship from the National Institute of Child Health and Human Development. D. W. M. is an Investigator, Howard Hughes Medical Institute.  相似文献   

6.
A polymorphism of purine nucleoside phosphorylase is described in sheep erythrocytes. Two isozymes were distinguished electrophoretically, one with high activity (NP-1) and one with low activity (NP-2). Breeding data suggest that the two isozymes are the product of two codominant alleles, NP1and NP2. The Km's for inosine did not differ between NP-1 and NP-2; however, NP-2 had a lower pH optimum and was relatively unstable when incubated at 48 C.Contribution No. 421-J, from the Department of Pathology, Kansas Agricultural Experiment Station, Manhattan, Kansas. Supported in part by USPHS Grants HL-70119 and HL 12072.  相似文献   

7.
根据Genbank中大肠杆菌嘌呤核苷磷酸化酶(PNP)基因的核苷酸序列,设计并合成了一对引物,以大肠杆菌基因组DNA为模板,进行PCR扩增,并将扩增产物定向连接到克隆、测序及真核表达载体PCDNA3中,进行酶切鉴定、测序及序列分析。结果表明PCR扩增出741bp大小的片段,通过酶切和序列分析证明含完整的PNP基因序列且基因插入方向正确,此序列与文献报道的PNP基因的同源性为99.7%。说明克隆的PNP基因与文献报道的基本一致,pcDNA3-PNP的构建成功为今后用其进行基因转染来研究PNP/Mep-dR自杀基因系统在肿瘤基因治疗中的应用打下了基础。  相似文献   

8.
The effects of organic solvents on the reaction rate and equilibrium of the ribosyl transfer reaction catalyzed by thermostable purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus JTS 859 were examined at 60°C. The reaction rate in the presence of 10% acetone was 1.6 times higher than that of the control. Acetone was the best organic solvent among those tested for accelerating the reaction rate without denaturing the enzymes. On the other hand, the reaction rate in the presence of 5% ethyl acetate was 1.5 times higher than that of the control. However the enzymes were denatured completely after 1 h incubation. Consequently, the acceleration was not attributed to the stabilization of the enzymes. The equilibrium constants of the reaction were not influenced by the presence of acetone, methyl or ethyl alcohols.  相似文献   

9.
The effects of organic solvents on the reaction rate and equilibrium of the ribosyl transfer reaction catalyzed by thermostable purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase from Bacillus stearothermophilus JTS 859 were examined at 60°C. The reaction rate in the presence of 10% acetone was 1.6 times higher than that of the control. Acetone was the best organic solvent among those tested for accelerating the reaction rate without denaturing the enzymes. On the other hand, the reaction rate in the presence of 5% ethyl acetate was 1.5 times higher than that of the control. However the enzymes were denatured completely after 1 h incubation. Consequently, the acceleration was not attributed to the stabilization of the enzymes. The equilibrium constants of the reaction were not influenced by the presence of acetone, methyl or ethyl alcohols.  相似文献   

10.
目的:对枯草芽孢杆菌TM903嘌呤核苷磷酸化酶进行分离纯化及酶学性质研究。方法:经加热、硫酸铵盐析和SephadexG-100凝胶过滤,对枯草芽孢杆菌TM903中的嘌呤核苷磷酸化酶进行分离纯化,并对其酶学性质进行研究。结果:酶的最适反应温度为65℃,最适反应pH值为7.5,在30-50℃时热稳定性较好;K^+对该酶有激活作用,而Na^+、ca^+、Mg^+、Mn^+等金属离子对该酶有抑制作用;Km值为2.11mmol/L,Vmax值为0.84mmol/(min·L)。结论:分离纯化了枯草芽孢杆菌TM903嘌呤核苷磷酸化酶,并研究了其酶学性质,为利巴韦林的发酵工艺优化提供了重要的酶学理论基础。  相似文献   

11.
    
In an effort to develop potent multisubstrate‐analog inhibitors of purine nucleoside phosphorylase (PNP), three nucleoside phosphonates were designed utilizing structural information from the previously reported structures of complexes of bovine PNP with substrates and products. The nucleoside phosphonates contain an acetal linkage at the O2′ and O3′ positions and a two‐C‐atom spacer between the ribose and phosphate moieties. The linkage enables the compounds to simultaneously occupy the purine‐, ribose‐ and phosphate‐binding sites. The chemical syntheses, inhibition profiles and structural characterization of these novel multisubstrate analog inhibitors with bovine PNP are described.  相似文献   

12.
酶法合成抗病毒药物阿糖腺苷   总被引:2,自引:0,他引:2  
目的:为了开发一种生产阿糖腺苷的有效方法。方法:研究了以产气肠杆菌完整细胞为催化剂酶法合成阿糖腺苷,优化了菌体培养条件以及酶反应条件。结果:在培养基中添加0.5%葡萄糖,33℃下培养16h,既能得到较多菌体,又能使菌体的催化活性保持较高。酶反应在pH7.0、25mmol/L的磷酸钾缓冲液中进行,底物浓度为阿糖尿苷30mmol/L,腺嘌呤10mmol/L,加入10%湿菌体,在60℃下振荡反应48h,腺嘌呤转化率可达90%。结论:酶法合成阿糖腺苷可应用于大规模工业化生产。  相似文献   

13.
    
Uridine phosphorylase (UPh) catalyzes the phosphorolytic cleavage of the C—­N glycosidic bond of uridine to ribose 1‐phosphate and uracil in the pyrimidine‐salvage pathway. The crystal structure of the Salmonella typhimurium uridine phosphorylase (StUPh) has been determined at 2.5 Å resolution and refined to an R factor of 22.1% and an Rfree of 27.9%. The hexameric StUPh displays 32 point‐group symmetry and utilizes both twofold and threefold non‐crystallographic axes. A phosphate is bound at the active site and forms hydrogen bonds to Arg91, Arg30, Thr94 and Gly26 of one monomer and Arg48 of an adjacent monomer. The hexameric StUPh model reveals a close structural relationship to Escherichia coli uridine phosphorylase (EcUPh).  相似文献   

14.
【目的】嘌呤核苷磷酸化酶(PNP,EC.2.4.2.1)在酶法合成核苷类药物及中间体中具有广泛应用。本文研究的目标是,获得极地嗜冷菌假交替单胞菌Pseudoa lteromonas sp.XM2107嘌呤核苷磷酸化酶编码基因,并对该酶酶学性质进行研究,以考察该酶在核苷类中间体及药物合成中的潜在应用价值。【方法】利用同源序列PCR技术从Pseudoa lteromonas sp.XM2107基因组DNA中扩增出其编码嘌呤核苷磷酸化酶基因,测序获得编码序列。将该基因在大肠杆菌BL21(DE3)中进行重组表达以及金属螯合层析纯化,对其酶学性质进行初步研究。【结果】经过测序获得了该酶编码基因序列,全长702 bp,共编码233个氨基酸,大小为25 kDa,Genbank登录号为GQ475485。酶学性质研究发现,该重组酶最适反应温度为50℃,最适酶促反应pH为7.6(25 mmol/L磷酸盐缓冲液),最适酶促反应底物为肌苷(Km值0.389 mmol/L,37℃),且对底物腺苷和鸟苷也有磷酸解活性,在普通温度下具有较高催化活性和较好热稳定性。【结论】来源于Pseudoa lteromonas sp.XM2107的嘌呤核苷磷酸化酶在普通温度条件下具有较高的催化活性及良好热稳定性性质,在核苷类中间体和药物合成中具有较广泛的应用价值。  相似文献   

15.
    
Purine‐nucleoside phosphorylase (PNP) deficiency in humans leads to inhibition of the T‐cell response. Potent membrane‐permeable inhibitors of this enzyme are therefore considered to be potential immunosuppressive agents. The binary complex of the trimeric calf spleen phosphorylase, which is highly homologous to human PNP, with the potent ground‐state analogue inhibitor 9‐(5,5‐difluoro‐5‐phosphonopentyl)guanine (DFPP‐G) was crystallized in the cubic space group P213, with unit‐cell parameter a = 93.183 Å and one monomer per asymmetric unit. High‐resolution X‐ray diffraction data were collected using synchrotron radiation (EMBL Outstation, DESY, Hamburg, station X13). The crystal structure was refined to a resolution of 2.2 Å and R and Rfree values of 19.1 and 24.2%, respectively. The crystal structure confirms that DFPP‐G acts as a multisubstrate analogue inhibitor as it binds to both nucleoside‐ and phosphate‐binding sites. The structure also provides the answers to some questions regarding the substrate specificity and molecular mechanism of trimeric PNPs. The wide access to the active‐site pocket that was observed in the reported structure as a result of the flexibility or disorder of two loops (residues 60–65 and 251–266) strongly supports the random binding of substrates. The putative hydrogen bonds identified in the base‐binding site indicate that N(1)—H and not O6 of the purine base defines the specificity of trimeric PNPs. This is confirmed by the fact that the contact of guanine O6 with Asn243 Oδ1 is not a direct contact but is mediated by a water molecule. Participation of Arg84 in the binding of the phosphonate group experimentally verifies the previous suggestion [Blackburn & Kent (1986), J. Chem. Soc. Perkin Trans. I, pp. 913–917; Halazy et al. (1991), J. Am. Chem. Soc. 113 , 315–317] that fluorination of alkylphosphonates yields compounds with properties that suitably resemble those of phosphate esters and in turn leads to optimized interactions of such analogues with the phosphate‐binding site residues. DFPP‐G shows a in the nanomolar range towards calf and human PNPs. To date, no high‐resolution X‐ray structures of these enzymes with such potent ground‐state analogue inhibitors have been available in the Protein Data Bank. The present structure may thus be used in the rational structure‐based design of new PNP inhibitors with potential medical applications.  相似文献   

16.
    
The parasite Schistosoma mansoni, unlike its mammalian hosts, lacks the de novo pathway for purine biosynthesis and depends on salvage pathways for its purine requirements. The gene encoding one enzyme of this pathway, purine nucleoside phosphorylase from S. mansoni (SmPNP) was identified, fully sequenced and cloned into the bacterial expression vector pMAL c2G to produce a protein in fusion with maltose‐binding protein. The recombinant fusion protein was expressed at high levels and was purified in a single step by amylose resin affinity chromatography. After factor Xa cleavage, SmPNP was purified using a cation‐exchange column and crystallized by hanging‐drop vapour diffusion using polyethylene glycol 1500 as precipitant in the presence of 20% glycerol in acetate buffer. The use of the non‐detergent sulfobetaine 195 (NDSB 195) as an additive had a marked effect on the size of the resulting crystals. Two data sets were obtained, one from a crystal grown in the absence of NDSB 195 and one from a crystal grown in its presence. The crystals are isomorphous and belong to the space group P212121. It is intended to use the structures in the discovery and development of specific inhibitors of SmPNP.  相似文献   

17.
嘌呤核苷磷酸化酶基因的克隆及原核表达载体的构建   总被引:1,自引:0,他引:1  
通过PCR方法从产气肠杆菌、胡萝卜软腐欧文氏菌、大肠杆菌扩增嘌呤核苷磷酸化酶(PNPase)基因,然后将扩增的约720bp的基因片段克隆到pET-28b表达载体上,构建重组PNPase的表达载体。核苷酸及推导的氨基酸序列分析表明,该基因在三个菌株之间有很高的同源性。SDS-PAGE电泳结果显示出明显的特异性蛋白质条带,其分子量约为29.8kDa.该载体的构建为进一步研究核苷及其类似物的生物合成奠定基础。  相似文献   

18.
    
The punA gene of the cariogenic pathogen Streptococcus mutans encodes purine nucleoside phosphorylase (PNP), which is a pivotal enzyme in the nucleotide‐salvage pathway, catalyzing the phosphorolysis of purine nucleosides to generate purine bases and α‐ribose 1‐phosphate. In the present work, the PNP protein was expressed in Escherichia coli strain BL21 (DE3) in a soluble form at a high level. After purification of the PNP enzyme, the protein was crystallized using the sitting‐drop vapour‐diffusion technique; the crystals diffracted to 1.6 Å resolution at best. The crystals belonged to space group H3, with unit‐cell parameters a = b = 113.0, c = 60.1 Å.  相似文献   

19.
    
Schistosomes are unable to synthesize purines de novo and depend exclusively on the salvage pathway for their purine requirements. It has been suggested that blockage of this pathway could lead to parasite death. The enzyme purine nucleoside phosphorylase (PNP) is one of its key components and molecules designed to inhibit the low‐molecular‐weight (LMW) PNPs, which include both the human and schistosome enzymes, are typically analogues of the natural substrates inosine and guanosine. Here, it is shown that adenosine both binds to Schistosoma mansoni PNP and behaves as a weak micromolar inhibitor of inosine phosphorolysis. Furthermore, the first crystal structures of complexes of an LMW PNP with adenosine and adenine are reported, together with those with inosine and hypoxanthine. These are used to propose a structural explanation for the selective binding of adenosine to some LMW PNPs but not to others. The results indicate that transition‐state analogues based on adenosine or other 6‐amino nucleosides should not be discounted as potential starting points for alternative inhibitors.  相似文献   

20.
Taking advantage of the highly specific structuralrequirements of antibodies for binding, the detectionof plant hormones in tissue by immunolocalisationoffers a powerful tool to study the distribution ofthese signalling molecules. For instance, specificmonoclonal and polyclonal antibodies have been raisedfor abscisic acid, indole-3-acetic acid and a varietyof cytokinins. Immobilisation by chemical fixation orfreezing minimises diffusion of these low molecularweight compounds in plant tissues. Associated primaryantibodies in sections or permeabilised cells can bedetected by secondary antibodies linked to enzymes,fluorescent molecules or electron opaque markers,which allow detection by either light or electronmicroscopy. These techniques have already found theirapplication in various studies related to thephysiology of these plant hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号