共查询到20条相似文献,搜索用时 0 毫秒
1.
Pex14/17, a filamentous fungus‐specific peroxin,is required for the import of peroxisomal matrix proteins and full virulence of Magnaporthe oryzae
下载免费PDF全文

Ling Li Jiaoyu Wang Haili Chen Rongyao Chai Zhen Zhang Xueqin Mao Haiping Qiu Hua Jiang Yanli Wang Guochang Sun 《Molecular Plant Pathology》2017,18(9):1238-1252
Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfil a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins, named peroxins, which are encoded by PEX genes. Pex14/17 is a putative recently identified peroxin, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity have not yet been documented. Here, we demonstrate the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 with regard to its protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. MoPEX19 deletion leads to the cytoplasmic distribution of Mopex14/17, indicating that the peroxisomal import of Pex14/17 is dependent on Pex19. The knockout mutants of MoPEX14/17 show reduced fatty acid utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, Δmopex14/17 mutants show delayed conidial generation and appressorial formation, and a reduction in appressorial turgor accumulation and penetration ability in host plants. These defects result in a significant reduction in the virulence of the mutant. These data indicate that MoPEX14/17 plays a crucial role in peroxisome biogenesis and contributes to fungal development and pathogenicity. 相似文献
2.
3.
4.
5.
6.
Rui Xu Yuan-Bao Li Chengyu Liu Ningning Shen Qian Zhang Tingyan Cao Minghui Qin Li-Bo Han Dingzhong Tang 《Molecular Plant Pathology》2021,22(12):1641-1655
Actin assembly at the hyphal tip is key for polar growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. The mechanism of its precise assemblies and biological functions is not understood. Here, we characterized the role of M. oryzae Twinfilin (MoTwf) in M. oryzae infection through organizing the actin cables that connect to Spitzenkörper (Spk) at the hyphal tip. MoTwf could bind and bundle the actin filaments. It formed a complex with Myosin2 (MoMyo2) and the Woronin body protein Hexagonal peroxisome 1 (MoHex1). Enrichment of MoMyo2 and MoHex1 in the hyphal apical region was disrupted in a ΔMotwf loss-of-function mutant, which also showed a decrease in the number and width of actin cables. These findings indicate that MoTwf participates in the virulence of M. oryzae by organizing Spk-connected actin filaments and regulating MoHex1 distribution at the hyphal tip. 相似文献
7.
Congxian Wu Yahong Lin Huawei Zheng Yakubu Saddeeq Abubakar Minghui Peng Jingjing Li Zhi Yu Zonghua Wang Naweed I. Naqvi Guangpu Li Jie Zhou Wenhui Zheng 《Molecular Plant Pathology》2021,22(2):284-298
In eukaryotic cells, Rab GTPases and the retromer complex are important regulators of intracellular protein transport. However, the mechanistic relationship between Rab GTPases and the retromer complex in relation to filamentous fungal development and pathogenesis is unknown. In this study, we used Magnaporthe oryzae, an important pathogen of rice and other cereals, as a model filamentous fungus to dissect this knowledge gap. Our data demonstrate that the core retromer subunit MoVps35 interacts with the Rab GTPase MoYpt7 and they colocalize to the endosome. Without MoYpt7, MoVps35 is mislocalized in the cytoplasm, indicating that MoYpt7 plays an important role in the recruitment of MoVps35. We further demonstrate that the expression of an inactive MoYpt7-DN (GDP-bound form) mutant in M. oryzae mimicks the phenotype defects of retromer cargo-sorting complex (CSC) null mutants and blocks the proper localization of MoVps35. In addition, our data establish that MoVps17, a member of the sorting nexin family, is situated at the endosome independent of retromer CSC but regulates the sorting function of MoVps35 after its recruitment to the endosomal membrane by MoYpt7. Taken together, these results provide insight into the precise mechanism of retromer CSC recruitment to the endosome by MoYpt7 and subsequent sorting by MoVps17 for efficient conidiation and pathogenicity of M. oryzae. 相似文献
8.
9.
Endoplasmic reticulum membrane‐bound MoSec62 is involved in the suppression of rice immunity and is essential for the pathogenicity of Magnaporthe oryzae
下载免费PDF全文

Zhuangzhi Zhou Zhiqian Pang Guihua Li Chunhua Lin Jing Wang Qiming Lv Chaozu He Lihuang Zhu 《Molecular Plant Pathology》2016,17(8):1211-1222
10.
Nagwa A. Abd-Elbary M.F.M. Eissa 《Archives Of Phytopathology And Plant Protection》2013,46(19):2324-2334
Influence of different inoculum levels of 0, 10, 100, 1000 and 10,000 individuals of Hirschmanniella oryzae on nematode reproduction and plant growth of rice cv. Giza171 and biochemical changes of infected plants was studied under screen-house conditions. Rate of nematode build up (Pf/Pi) was negatively correlated with the progressive increase in nematode inoculum levels. The percentage reduction in growth parameters, rice grain yield and the amount of total and reducing sugars were markedly affected showing a negative correlation with the tested inocula. The conspicuous reductions of plant growth, yield and total and reducing sugar contents were obtained by using 1000 and 10,000 nematodes per pot. The inoculum level of 1000 nematodes per pot was identified as critical population at which control programme must be started. 相似文献
11.
前人研究发现水稻Os ERF96(ethylene responsive factor 96)可应答白叶枯病病原菌的侵染,但其功能及表达调控机制仍不清楚,本研究进一步分析了该基因在水稻应答稻瘟病病原菌侵染及外源激素(SA和Me JA)处理下的转录情况,并分析了其启动子的诱导表达活性。结果表明:相对于对照组,Os ERF96在接种稻瘟病后1~4 d表达量显著上调,以第1天最高,此后逐渐下降,外源SA处理后Os ERF96表达量持续上调;利用Os ERF96启动子驱动GUS的转基因株系分析了Os ERF96启动子的诱导活性,结果表明GUS在根、茎和叶均有不同程度组成型表达,稻瘟病菌接种后4~7 d GUS活性持续升高。GUS活性定量表明,稻瘟病菌和SA处理条件下均出现了升高。综上所述,Os ERF96可应答白叶枯病或稻瘟病病原菌的浸染,其启动子是一个对病原菌侵染产生应答的诱导性启动子。 相似文献
12.
Liying Dong Shufang Liu Jing Li Didier Tharreau Pei Liu Dayun Tao Qinzhong Yang 《The Plant Pathology Journal》2022,38(6):679
Rice blast is one of the most destructive diseases of rice worldwide, and the causative agent is the filamentous ascomycete Magnaporthe oryzae. With the successful cloning of more and more avirulence genes from M. oryzae, the direct extraction of M. oryzae genomic DNA from infected rice tissue would be useful alternative for rapid monitoring of changes of avirulence genes without isolation and cultivation of the pathogen. In this study, a fast, low-cost and reliable method for DNA preparation of M. oryzae from a small piece of infected single rice leaf or neck lesion was established. This single step method only required 10 min for DNA preparation and conventional chemical reagents commonly found in the laboratory. The AvrPik and AvrPi9 genes were successfully amplified with the prepared DNA. The expected DNA fragments from 570 bp to 1,139 bp could be amplified even three months after DNA preparation. This method was also suitable for DNA preparation from M. oryzae strains stored on the filter paper. All together these results indicate that the DNA preparation method established in this study is reliable, and could meet the basic needs for polymerase chain reaction-based analysis of M. oryzae. 相似文献
13.
14.
Hoshino A Fujioka K Oku T Nakamura S Suga M Yamaguchi Y Suzuki K Yasuhara M Yamamoto K 《Microbiology and immunology》2004,48(12):985-994
Fluorescent nanocrystal quantum dots (QDs) have the potential to be applied to bioimaging since QDs emit higher and far longer fluorescence than conventional organic probes. Here we show that QDs conjugated with signal peptide obey the order to transport the assigned organelle in living cells. We designed the supermolecule of luminescent QDs conjugated with nuclear- and mitochondria-targeting ligands. When QDs with nuclear-localizing signal peptides were added to the culture media, we can visualize the movements of the QDs being delivered into the nuclear compartment of the cells with 15 min incubation. In addition, mitochondrial signal peptide can also transport QDs to the mitochondria in living cells. In conclusion, these techniques have the possibility that QDs can reveal the transduction of proteins and peptides into specific subcellular compartments as a powerful tool for studying intracellular analysis in vitro and even in vivo. 相似文献
15.
A novel Arabidopsis mutant has been identified with constitutive expression of GST1-GUS using plants with a pathogen-responsive reporter transgene containing the beta-glucuronidase (GUS) coding region driven by the GST1 promoter. The recessive mutant, called agd2 (aberrant growth and death2), has salicylic acid (SA)-dependent increased resistance to virulent and avirulent strains of the bacterial pathogen Pseudomonas syringae, elevated SA levels, a low level of spontaneous cell death, callose deposition, and enlarged cells in leaves. The enhanced resistance of agd2 to virulent P. syringae requires the SA signaling component NONEXPRESSOR OF PR1 (NPR1). However, agd2 renders the resistance response to P. syringae carrying avrRpt2 NPR1-independent. Thus agd2 affects both an SA- and NPR1-dependent general defense pathway and an SA-dependent, NPR1-independent pathway that is active during the recognition of avirulent P. syringae. agd2 plants also fail to show a hypersensitive cell death response (HR) unless NPR1 is removed. This novel function for NPR1 is also apparent in otherwise wild-type plants: npr1 mutants show a stronger HR, while NPR1-overproducing plants show a weaker HR when infected with P. syringae carrying the avrRpm1 gene. Spontaneous cell death in agd2 is partially suppressed by npr1, indicating that NPR1 can suppress or enhance cell death depending on the cellular context. agd2 plants depleted of SA show a dramatic exacerbation of the cell-growth phenotype and increased callose deposition, suggesting a role for SA in regulating growth and this cell-wall modification. AGD2 may function in cell death and/or growth control as well as the defense response, similarly to what has been described in animals for the functions of NFkappaB. 相似文献
16.
Evidently, epigenetics is at forefront in explaining the mechanisms underlying the success of human pathogens and in the identification of pathogen‐induced modifications within host plants. However, there is a lack of studies highlighting the role of epigenetics in the modulation of the growth and pathogenicity of fungal plant pathogens. In this review, we attempt to highlight and discuss the role of epigenetics in the regulation of the growth and pathogenicity of fungal phytopathogens using Magnaporthe oryzae, a devastating fungal plant pathogen, as a model system. With the perspective of wide application in the understanding of the development, pathogenesis and control of other fungal pathogens, we attempt to provide a synthesized view of the epigenetic studies conducted on M. oryzae to date. First, we discuss the mechanisms of epigenetic modifications in M. oryzae and their impact on fungal development and pathogenicity. Second, we highlight the unexplored epigenetic mechanisms and areas of research that should be considered in the near future to construct a holistic view of epigenetic functioning in M. oryzae and other fungal plant pathogens. Importantly, the development of a complete understanding of the modulation of epigenetic regulation in fungal pathogens can help in the identification of target points to combat fungal pathogenesis. 相似文献
17.
Disruption of actin motor function due to MoMyo5 mutation impairs host penetration and pathogenicity in Magnaporthe oryzae
下载免费PDF全文

Wei Tang Chuyun Gao Jingzhen Wang Ziyi Yin Jinlong Zhang Jun Ji Haifeng Zhang Xiaobo Zheng Zhengguang Zhang Ping Wang 《Molecular Plant Pathology》2018,19(3):689-699
Actin motor myosin proteins are the driving forces behind the active transport of vesicles, and more than 20 classes of myosin have been found to contribute to a wide range of cellular processes, including endocytosis and exocytosis, autophagy, cytokinesis and the actin cytoskeleton. In Saccharomyces cerevisiae, class V myosin Myo2 (ScMyo2p) is important for the transport of distinct sets of cargo to regions of the cell along the cytoskeleton for polarized growth. To study whether myosins play a role in the formation or function of the appressorium (infectious structure) of the rice blast fungus Magnaporthe oryzae, we identified MoMyo5 as an orthologue of ScMyo2p and characterized its function. Targeted gene disruption revealed that MoMyo5 is required for intracellular transport and is essential for hyphal growth and asexual reproduction. Although the ΔMomyo5 mutant could form appressorium‐like structures, the structures were unable to penetrate host cells and were therefore non‐pathogenic. We further found that MoMyo5 moves dynamically from the cytoplasm to the hyphal tip, where it interacts with MoSec4, a Rab GTPase involved in secretory transport, hyphal growth and fungal pathogenicity. Our studies indicate that class V myosin and its translocation are tightly coupled with hyphal growth, asexual reproduction, appressorium function and pathogenicity in the rice blast fungus. 相似文献
18.
Rice blast disease is one of the most devastating diseases of rice (Oryza sativa L.) caused by the fungus Magnaporthe oryzae (M. oryzae), and neck blast is the most destructive phase of this illness. The underlying molecular mechanisms of rice blast resistance are not well known. Thus, we collected 150 rice varieties from different ecotypes in China and assessed the rice blast resistances under the natural conditions that favoured disease development in Jining, Shandong Province, China in 2017. Results showed that 92 (61.3%) and 58 (38.7%) rice varieties were resistant and susceptible to M. oryzae, respectively. Among the 150 rice varieties screened for the presence of 13 major blast resistance (R) genes against M. oryzae by using functional markers, 147 contained one to eight R genes. The relationship between R genes and disease response was discussed by analysing the phenotype and genotype of functional markers. The results showed that the rice blast resistance gene Pita was significantly correlated with rice blast resistance. Our results provided a basis for the further understanding of the distribution of 13 major R genes of rice blast in the germplasm resources of the tested rice varieties, and were meaningful for rice disease resistance breeding. 相似文献
19.
Alpha-picolinic acid (PA), a metabolite of tryptophan and an inducer of apoptosis in the animal cell, has been reported to be a toxin produced by some of plant fungal pathogens and used in screening for disease resistant mutants. Here, we report that PA is an efficient apoptosis agent triggering cell death of hypersensitive-like response in planta. Confirmed by Fluorescence Activated Cell Sorter (FACS), rice suspension cells and leaves exhibited programmed cell death induced by PA. The PA-induced cell death was associated with the accumulation of reactive oxygen species that could be blocked by diphenylene iodonium chloride, indicating that the generation of reactive oxygen species was NADPHoxidase dependent. We also demonstrated the induction of rice defense-related genes and subsequent resistant enhancement by PA against the rice blast fungus Magnaporthe grisea. Hence, it was concluded that the PA-stimulated defense response likely involves the onset of the hypersensitive response in rice, which also provides a simple eliciting tool for studying apoptosis in the plant cell. 相似文献
20.
【目的】白叶枯病菌hrp基因簇由包括hrpD6在内的26个hpa-hrp-hrc基因组成,与植物互作后形成Ⅲ型分泌系统(T3S),将T3S效应分子注入寄主细胞中从而决定在非寄主上的过敏反应(HR)和在水稻上的致病性。但hrpD6基因是否参与了白叶枯病菌在非寄主上的过敏反应(HR)和在水稻上的致病性(pathogenicity)还不清楚。【方法】借助同源重组方法,本研究对白叶枯病菌hrpD6基因进行了突变。【结果】PCR和Southern杂交结果显示,hrpD6基因被成功敲除。烟草上测定结果显示,hrpD6突变体ΔPhrpD6丧失了HR激发能力。致病性测定发现,ΔPhrpD6在水稻苗期不能形成水渍症状,在成株期水稻上不具有致病性,并且细菌生长能力显著下降。功能互补结果显示,hrpD6基因可恢复ΔPhrpD6在烟草上激发HR和在水稻上的致病性以及在水稻组织中的生长能力。RT-PCR结果显示,hrpD6基因的转录表达不仅受水稻诱导,而且受hrpG和hrpX基因调控。不仅如此,hrpD6基因突变还影响T3S效应分子hpa1基因的转录表达和Hpa1蛋白的分泌,暗示hrpD6基因对hpa1基因转录表达具有调控作用。【结论】hrpD6基因的缺失导致白叶枯病菌不能激发烟草产生HR和和丧失在水稻上的致病性,主要是HrpD6对hpa1基因转录表达具有调控作用,并影响T3S效应分子Hpa1的分泌。这些结果为进一步分析hrpD6是否参与T3S分泌装置的形成和调控其它hrp基因的转录表达从而决定病菌在非寄主上的HR和在水稻上的致病性,提供了科学线索。 相似文献