首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The polyketide toxin dothistromin is very similar in structure to the aflatoxin precursor, versicolorin B. Dothistromin is made by a pine needle pathogen, Dothistroma septosporum, both in culture and in planta. Orthologs of aflatoxin biosynthetic genes have been identified that are required for dothistromin biosynthesis in D. septosporum. In contrast to the situation in aflatoxin-producing fungi where 25 aflatoxin biosynthetic and regulatory genes are tightly clustered in one region of the genome, the dothistromin gene cluster is fragmented. Three mini-clusters of dothistromin genes have been identified, each located on a 1.3-Mb chromosome and each grouped with non-dothistromin genes. There are no obvious patterns of repeated sequences or transposon relics to suggest recent recombination events. Most dothistromin genes within the mini-clusters are co-regulated, suggesting that coordinate control of gene expression is achieved despite this unusual arrangement of secondary metabolite biosynthetic genes.  相似文献   

3.
Dothistroma needle blight (DNB) is a disease caused by two fungi, Dothistroma septosporum and Dothistroma pini, that has resulted in significant damage to pine forests worldwide. Analysis of 1194 British Dothistroma isolates revealed that only D. septosporum occurred in Britain; D. pini was not detected. The genetic diversity, population structure, and reproductive mode of D. septosporum in Britain were investigated using species-specific mating type markers and eleven microsatellite markers, revealing 382 multilocus haplotypes. Comparison of clustering methods (STRUCTURE, BAPS, DAPC) as well as spatial principal component analysis (sPCA) showed some differences between the methods but similar groupings. A clear north-south cline was found with attributes consistent with a native fungus. Other groups were most probably introduced, with one nearly exclusive lodgepole pine group exhibiting links with Canada. Evidence for the movement of specific multilocus haplotypes via nursery stock as well as across borders is provided and the implications discussed.  相似文献   

4.
Dothistroma septosporum is a haploid fungal pathogen that causes a serious needle blight disease of pines, particularly as an invasive alien species on Pinus radiata in the Southern Hemisphere. During the course of the last two decades, the pathogen has also incited unexpected epidemics on native and non‐native pine hosts in the Northern Hemisphere. Although the biology and ecology of the pathogen has been well documented, there is a distinct lack of knowledge regarding its movement or genetic diversity in many of the countries where it is found. In this study we determined the global population diversity and structure of 458 isolates of D. septosporum from 14 countries on six continents using microsatellite markers. Populations of the pathogen in the Northern Hemisphere, where pines are native, displayed high genetic diversities and included both mating types. Most of the populations from Europe showed evidence for random mating, little population differentiation and gene flow between countries. Populations in North America (USA) and Asia (Bhutan) were genetically distinct but migration between these continents and Europe was evident. In the Southern Hemisphere, the population structure and diversity of D. septosporum reflected the anthropogenic history of the introduction and establishment of plantation forestry, particularly with Pinus radiata. Three introductory lineages in the Southern Hemisphere were observed. Countries in Africa, that have had the longest history of pine introductions, displayed the greatest diversity in the pathogen population, indicating multiple introductions. More recent introductions have occurred separately in South America and Australasia where the pathogen population is currently reproducing clonally due to the presence of only one mating type.  相似文献   

5.
Dothistroma septosporum is the causal agent of Dothistroma needle blight of pine trees. A novel green fluorescent protein (GFP)-based screening method was developed to assess the potential of microorganisms for biocontrol of Dothistroma. The screen utilizes GFP expression as an indicator of metabolic activity in the pathogen and hygromycin resistance selection to determine if the interaction is fungistatic or fungicidal. Results suggested that six of eight Trichoderma isolates tested have the potential to control Dothistroma in vitro, via a fungicidal action. Because D. septosporum produces a broad-spectrum toxin, dothistromin, the inhibition of Trichoderma spp. by D. septosporum was determined by growth rate measurements compared to controls. Inhibition of the Trichoderma spp. ranged from no inhibition to 30% inhibition and was influenced by the assay medium used. The GFP screening method was also assessed to determine if it was suitable for screening bacteria as potential biocontrol candidates. Although a method involving indirect-contact had to be used, two of four Bacillus strains showed antagonistic activity against D. septosporum in vitro, via a fungistatic interaction. The four bacterial strains inhibited D. septosporum growth by 14.0 to 39.8%. This GFP-based method represents a novel approach to screening fungi and bacteria for antagonistic activity.  相似文献   

6.
Pseudogenes are genes with significant homology to functional genes, but contain disruptive mutations (DMs) leading to the production of non‐ or partially functional proteins. Little is known about pseudogenization in pathogenic fungi with different lifestyles. Here, we report the identification of DMs causing pseudogenes in the genomes of the fungal plant pathogens Botrytis cinerea, Cladosporium fulvum, Dothistroma septosporum, Mycosphaerella fijiensis, Verticillium dahliae and Zymoseptoria tritici. In these fungi, we identified 1740 gene models containing 2795 DMs obtained by an alignment‐based gene prediction method. The contribution of sequencing errors to DMs was minimized by analyses of resequenced genomes to obtain a refined dataset of 924 gene models containing 1666 true DMs. The frequency of pseudogenes varied from 1% to 5% in the gene catalogues of these fungi, being the highest in the asexually reproducing fungus C. fulvum (4.9%), followed by D. septosporum (2.4%) and V. dahliae (2.1%). The majority of pseudogenes do not represent recent gene duplications, but members of multi‐gene families and unitary genes. In general, there was no bias for pseudogenization of specific genes in the six fungi. Single exceptions were those encoding secreted proteins, including proteases, which appeared more frequently pseudogenized in C. fulvum than in D. septosporum. Most pseudogenes present in these two phylogenetically closely related fungi are not shared, suggesting that they are related to adaptation to a different host (tomato versus pine) and lifestyle (biotroph versus hemibiotroph).  相似文献   

7.
《Fungal biology》2019,123(5):397-407
Fungal secondary metabolites have important functions for the fungi that produce them, such as roles in virulence and competition. The hemibiotrophic pine needle pathogen Dothistroma septosporum has one of the lowest complements of secondary metabolite (SM) backbone genes of plant pathogenic fungi, indicating that this fungus produces a limited range of SMs. Amongst these SMs is dothistromin, a well-characterised polyketide toxin and virulence factor that is required for expansion of disease lesions in Dothistroma needle blight disease. Dothistromin genes are dispersed across six loci on one chromosome, rather than being clustered as for most SM genes. We explored other D. septosporum SM genes to determine if they are associated with gene clusters, and to predict what their likely products and functions might be. Of nine functional SM backbone genes in the D. septosporum genome, only four were expressed under a range of in planta and in culture conditions, one of which was the dothistromin PKS backbone gene. Of the other three expressed genes, gene knockout studies suggested that DsPks1 and DsPks2 are not required for virulence and attempts to determine a functional squalestatin-like SM product for DsPks2 were not successful. However preliminary evidence suggested that DsNps3, the only SM backbone gene to be most highly expressed in the early stage of disease, appears to be a virulence factor. Thus, despite the small number of SM backbone genes in D. septosporum, most of them appear to be poorly expressed or dispensable for virulence in planta. This work contributes to a growing body of evidence that many fungal secondary metabolite gene clusters might be non-functional and may be evolutionary relics.  相似文献   

8.
Spliceosomal introns are key components of the eukaryotic gene structure. Although they contributed to the emergence of eukaryotes, their origin remains elusive. In fungi, they might originate from the multiplication of invasive introns named Introner-Like Elements (ILEs). However, so far ILEs have been observed in six fungal species only, including Fulvia fulva and Dothistroma septosporum (Dothideomycetes), arguing against ILE insertion as a general mechanism for intron gain. Here, we identified novel ILEs in eight additional fungal species that are phylogenetically related to F. fulva and D. septosporum using PCR amplification with primers derived from previously identified ILEs. The ILE content appeared unique to each species, suggesting independent multiplication events. Interestingly, we identified four genes each containing two gained ILEs. By analysing intron positions in orthologues of these four genes in Ascomycota, we found that three ILEs had inserted within a 15 bp window that contains regular spliceosomal introns in other fungal species. These three positions are not the result of intron sliding because ILEs are newly gained introns. Furthermore, the alternative hypothesis of an inferred ancestral gain followed by independent losses contradicts the observed degeneration of ILEs. These observations clearly indicate three parallel intron gains in four genes that were randomly identified. Our findings suggest that parallel intron gain is a phenomenon that has been highly underestimated in ILE-containing fungi, and likely in the whole fungal kingdom.  相似文献   

9.
To facilitate infection, pathogens deploy a plethora of effectors to suppress basal host immunity induced by exogenous microbe-associated or endogenous damage-associated molecular patterns (DAMPs). In this study, we have characterized family 17 glycosyl hydrolases of the tomato pathogen Cladosporium fulvum (CfGH17) and studied their role in infection. Heterologous expression of CfGH17-1 to 5 by potato virus X in different tomato cultivars showed that CfGH17-1 and CfGH17-5 enzymes induce cell death in Cf-0, Cf-1 and Cf-5 but not in Cf-Ecp3 tomato cultivars or tobacco. Moreover, CfGH17-1 orthologues from other phytopathogens, including Dothistroma septosporum and Mycosphaerella fijiensis, also trigger cell death in tomato. CfGH17-1 and CfGH17-5 are predicted to be β-1,3-glucanases and their enzymatic activity is required for the induction of cell death. CfGH17-1 hydrolyses laminarin, a linear 1,3-β-glucan with 1,6-β linkages. CfGH17-1 expression is down-regulated during the biotrophic phase of infection and up-regulated during the necrotrophic phase. Deletion of CfGH17-1 in C. fulvum did not reduce virulence on tomato, while constitutive expression of CfGH17-1 decreased virulence, suggesting that abundant presence of CfGH17-1 during biotrophic growth may release a DAMP that activates plant defence responses. Under natural conditions CfGH17-1 is suggested to play a role during saprophytic growth when the fungus thrives on dead host tissue, which is in line with its high levels of expression at late stages of infection when host tissues have become necrotic. We suggest that CfGH17-1 releases a DAMP from the host cell wall that is recognized by a yet unknown host plant receptor.  相似文献   

10.
11.
Secreted RNase proteins have been reported from only a few pathogens, and relatively little is known about their biological functions. Fusarium oxysporum is a soilborne fungal pathogen that causes Fusarium wilt, one of the most important diseases on tomato. During the infection of F. oxysporum, some proteins are secreted that modulate host plant immunity and promote pathogen invasion. In this study, we identify an RNase, FoRnt2, from the F. oxysporum secretome that belongs to the ribonuclease T2 family. FoRnt2 possesses an N-terminal signal peptide and can be secreted from F. oxysporum. FoRnt2 exhibited ribonuclease activity and was able to degrade the host plant total RNA in vitro dependent on the active site residues H80 and H142. Deletion of the FoRnt2 gene reduced fungal virulence but had no obvious effect on mycelial growth and conidial production. The expression of FoRnt2 in tomato significantly enhanced plant susceptibility to pathogens. These data indicate that FoRnt2 is an important contributor to the virulence of F. oxysporum, possibly through the degradation of plant RNA.  相似文献   

12.
CfAvr4, a chitin‐binding effector protein produced by the Dothideomycete tomato pathogen Cladosporium fulvum, protects the cell wall of this fungus against hydrolysis by secreted host chitinases during infection. However, in the presence of the Cf‐4 immune receptor of tomato, CfAvr4 triggers a hypersensitive response (HR), which renders the pathogen avirulent. Recently, several orthologues of CfAvr4 have been identified from phylogenetically closely related species of Dothideomycete fungi. Of these, DsAvr4 from Dothistroma septosporum also triggers a Cf‐4‐dependent HR, but CaAvr4 and CbAvr4 from Cercospora apii and Cercospora beticola, respectively, do not. All, however, bind chitin. To identify the region(s) and specific amino acid residue(s) of CfAvr4 and DsAvr4 required to trigger a Cf‐4‐dependent HR, chimeric and mutant proteins, in which specific protein regions or single amino acid residues, respectively, were exchanged between CfAvr4 and CaAvr4 or DsAvr4 and CbAvr4, were tested for their ability to trigger an HR in Nicotiana benthamiana plants transgenic for the Cf‐4 immune receptor gene. Based on this approach, a single region common to CfAvr4 and DsAvr4 was determined to carry a conserved proline residue necessary for the elicitation of this HR. In support of this result, a Cf‐4‐dependent HR was triggered by mutant CaAvr4 and CbAvr4 proteins carrying an arginine‐to‐proline substitution at this position. This study provides the first step in deciphering how Avr4 orthologues from different Dothideomycete fungi trigger a Cf‐4‐dependent HR.  相似文献   

13.
Bradshaw RE  Zhang S 《Mycopathologia》2006,162(3):201-213
Dothistromin is a mycotoxin that is remarkably similar in structure to versicolorin B, a precursor of both aflatoxin and sterigmatocystin. Dothistromin-producing fungi also produce related compounds, including some aflatoxin precursors as well as alternative forms of dothistromin. Dothistromin is synthesized by pathogenic species of Dothistroma in the red bands of pine needles associated with needle blight, but is also made in culture where it is strongly secreted into the surrounding medium. Orthologs of aflatoxin and sterigmatocystin biosynthetic genes have been found that are required for the biosynthesis of dothistromin, along with others that are speculated to be involved in the same pathway on the basis of their sequence similarity to aflatoxin genes. An epoxide hydrolase gene that has no homolog in the aflatoxin or sterigmatocystin gene clusters is also clustered with the dothistromin genes, and all these genes appear to be located on a minichromosome in Dothistroma septosporum. The dothistromin genes are expressed at an early stage of growth, suggesting a role in the first stages of plant invasion by the fungus. Future studies are expected to reveal more about the role of dothistromin in needle blight and about the genomic organization and expression of dothistromin genes: these studies will provide for interesting comparisons with these aspects of aflatoxin and sterigmatocystin biosynthesis.  相似文献   

14.
Analysis of an invasive species' niche shift between native and introduced ranges, along with potential distribution maps, can provide valuable information about its invasive potential. The tawny crazy ant, Nylanderia fulva, is a rapidly emerging and economically important invasive species in the southern United States. It is originally from east‐central South America and has also invaded Colombia and the Caribbean Islands. Our objectives were to generate a global potential distribution map for N. fulva, identify important climatic drivers associated with its current distribution, and test whether N. fulva's realized climatic niche has shifted across its invasive range. We used MaxEnt niche model to map the potential distribution of N. fulva using its native and invaded range occurrences and climatic variables. We used principal component analysis methods for investigating potential shifts in the realized climatic niche of N. fulva during invasion. We found strong evidence for a shift in the realized climatic niche of N. fulva across its invasive range. Our models predicted potentially suitable habitat for N. fulva in the United States and other parts of the world. Our analyses suggest that the majority of observed occurrences of N. fulva in the United States represent stabilizing populations. Mean diurnal range in temperature, degree days at ≥10°C, and precipitation of driest quarter were the most important variables associated with N. fulva distribution. The climatic niche expansion demonstrated in our study may suggest significant plasticity in the ability of N. fulva to survive in areas with diverse temperature ranges shown by its tolerance for environmental conditions in the southern United States, Caribbean Islands, and Colombia. The risk maps produced in this study can be useful in preventing N. fulva's future spread, and in managing and monitoring currently infested areas.  相似文献   

15.
Plant pathogens continuously evolve to evade host immune responses. During host colonization, many fungal pathogens secrete effectors to perturb such responses, but these in turn may become recognized by host immune receptors. To facilitate the evolution of effector repertoires, such as the elimination of recognized effectors, effector genes often reside in genomic regions that display increased plasticity, a phenomenon that is captured in the two‐speed genome hypothesis. The genome of the vascular wilt fungus Verticillium dahliae displays regions with extensive presence/absence polymorphisms, so‐called lineage‐specific regions, that are enriched in in planta‐induced putative effector genes. As expected, comparative genomics reveals differential degrees of sequence divergence between lineage‐specific regions and the core genome. Unanticipated, lineage‐specific regions display markedly higher sequence conservation in coding as well as noncoding regions than the core genome. We provide evidence that disqualifies horizontal transfer to explain the observed sequence conservation and conclude that sequence divergence occurs at a slower pace in lineage‐specific regions of the V. dahliae genome. We hypothesize that differences in chromatin organisation may explain lower nucleotide substitution rates in the plastic, lineage‐specific regions of V. dahliae.  相似文献   

16.
Significant progress has been made in elucidating the mechanisms used by plants to recognize pathogens and activate “immune” responses. A “first line” of defense can be triggered through recognition of conserved Pathogen or Microbe Associated Molecular Patterns (PAMPs or MAMPs), resulting in activation of basal (or non-host) plant defenses, referred to as PAMP-triggered immunity (PTI). Disease resistance responses can also subsequently be triggered via gene-for-gene type interactions between pathogen avirulence effector genes and plant disease resistance genes (Avr-R), giving rise to effector triggered immunity (ETI). The majority of the conceptual advances in understanding these systems have been made using model systems, such as Arabidopsis, tobacco, or tomato in combination with biotrophic pathogens that colonize living plant tissues. In contrast, how these disease resistance mechanisms interact with non-biotrophic (hemibiotrophic or necrotrophic) fungal pathogens that thrive on dying host tissue during successful infection, is less clear. Several lines of recent evidence have begun to suggest that these organisms may actually exploit components of plant immunity in order to infect, successfully colonize and reproduce within host tissues. One underlying mechanism for this strategy has been proposed, which has been referred to as effector triggered susceptibility (ETS). This review aims to highlight the complexity of interactions between plant recognition and defense activation towards non-biotrophic pathogens, with particular emphasis on three important fungal diseases of wheat (Triticum aestivum) leaves.  相似文献   

17.
We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation.  相似文献   

18.
19.
Dothistromin is a polyketide toxin, produced by a fungal forest pathogen, with structural similarity to the aflatoxin precursor versicolorin B. Biochemical and genetic studies suggested that there are common steps in the biosynthetic pathways for these metabolites and showed similarities between some of the genes. A polyketide synthase gene (pksA) was isolated from dothistromin-producing Dothistroma septosporum by hybridization with an aflatoxin ortholog from Aspergillus parasiticus. Inactivation of this gene in D. septosporum resulted in mutants that could not produce dothistromin but that could convert exogenous aflatoxin precursors, including norsolorinic acid, into dothistromin. The mutants also had reduced asexual sporulation compared to the wild type. So far four other genes are known to be clustered immediately alongside pksA. Three of these (cypA, moxA, avfA) are predicted to be orthologs of aflatoxin biosynthetic genes. The other gene (epoA), located between avfA and moxA, is predicted to encode an epoxide hydrolase, for which there is no homolog in either the aflatoxin or sterigmatocystin gene clusters. The pksA gene is located on a small chromosome of ~1.3 Mb in size, along with the dothistromin ketoreductase (dotA) gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号