首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The frequency of initiation of friable, embryogenic callus from immature embryos of the elite maize inbred line B73 was increased dramatically by introgression of chromosomal segments from the inbred line A188 through classical backcross breeding. Less than 0.2% of the immature B73 embryos tested (5 of 3,710) formed embryogenic callus. The breeding scheme consisted of six generations of backcrossing to B73 with selection at each generation for high frequency initiation of embryogenic cultures. BC6 individuals were selfed for four generations to select homozygous lines. The average embryogenic culture initiation frequency increased to 46% (256/561). Nearly all (91%) of the embryos from one BC6 S4 plant formed embryogenic cultures. RFLP analysis was used to determine the locations and effects of the introgressed A188 chromosomal segments. Five segments were retained through at least the fifth backcross generation. The hypothesis that one or more of these five regions contains genes controlling somatic embryogenesis in maize was tested using an F2 population of the cross A188 X Mo17. A set of five DNA markers (three of them linked) explained 82% of the observed phenotypic variance for percentage of immature embryos forming embryognic callus. Four of the five markers were located in or near introgressed A188 chromosome segments.The region marked by probe c595 on the long arm of chromosome 9 was highly associated with several measures of in vitro culture response (percent embryogenic embryos, plants per embryo, and plants per embryogenic embryo). We propose that there is a major gene (or genes) in this region in A188 that promotes embryogenic callus initiation and plant regeneration in B73, Mo17, and probably many other recalcitrant inbred lines of maize.  相似文献   

2.
Summary Somatic embryogenesis from different genotypes of Asparagus officinalis L. could be obtained by in vitro culture of shoot apices. Apices were first cultured on an auxin-rich inducing medium and then transferred onto a hormone-free development medium. All genotypes tested in this way produced a few somatic embryos. In some experiments, during the development phase, a new kind of friable highly embryogenic tissue appeared in a random manner. These tissues could be continuously subcultured on a hormone-free medium and were named embryogenic lines. Five of these embryogenic lines regenerated plants from somatic embryos. These regenerated plants exhibited an increased embryogenic response compared to the parent plants; e.g. apex culture produced somatic embryos without any auxin treatments. For one of the embryogenic lines, a genetic analysis showed that the improved embryogenic response of regenerated plants was controlled by a mendelian dominant monogenic mutation.Abbreviations LSEA low somatic embryogenesis ability - HSEA high somatic embryogenesis ability - NAA 1-naphthaleneacetic acid  相似文献   

3.
Summary Genetic factors controlling the differential expression of somatic embryogenesis and plant regeneration of maize from tissue culture were studied in two crosses. Inbred, hybrid, F2 and backcross generations developed from crossing maize inbred A188 with two commercially important inbred maize lines (B73 and Mo17) demonstrated genetic and environmental effects on somatic embryogenesis and plant regeneration when immature zygotic embryos were cultured on MS medium. Additive gene effects were more important in both crosses than dominant gene effects for precent somatic embryogenesis and percent or number of plants regenerated per embryo when generation means were analyzed. In backcross generations of each cross, cytoplasmic, maternal and/or paternal effects were significant for frequency of somatic embryos three weeks after culture as well as frequency, or number of plants regenerated per embryo, nine weeks after culture. Analysis of genetic variances suggests at least one gene (or block of genes) controls the expression of the frequency of somatic embryogenesis in these crosses. Differences in somatic embryogenesis and plant regeneration between B73 and Mo17 are discussed. This is Journal Paper No. 11,435 of the Purdue University Agricultural Experiment Station.  相似文献   

4.
Fertile plants have been obtained from maize (Zea mays L.) embryogenic suspension culture protoplasts. Friable, embryogenic callus initiated from an immature embryo from a cross involving the genotypes A188, B73, and Black Mexican sweetcorn was used to establish a rapidly growing embryogenic suspension culture. After nine months in culture, high yields of viable protoplasts (30×106/ gram fresh weight) were obtained following a 1.5 hour enzymatic digestion. Protoplasts cultured with feeder cells divided and formed embryogenic callus, from which male and female fertile plants were regenerated. Protoplast-derived R1 plants were self-pollinated and immature R2 embryos isolated for callus initiation. Female fertile plants have also been produced from protoplasts isolated from an R2-derived suspension culture. Significant interactions between protoplast and feeder-cell lines were observed.Abbreviations BC backcross - BMS Black Mexican Sweetcorn - 2,4-D 2,4-dichlorophenoxyacetic acid - PWS protoplast wash solution (0.2 M mannitol, 80 mM CaCl2) - FDA fluorescein diacetate - ABA abscisic acid  相似文献   

5.
A genetic transformation procedure for Chamaecyparis obtusa was developed after co-cultivation of embryogenic tissues with disarmed Agrobacterium tumefaciens strain C58/pMP90, which harbours the sgfp (synthetic green fluorescent protein) visual reporter and nptII (neomycin phoshotransferase II) selectable marker genes. The highest transformation frequency was 22.5 independent transformed lines per dish (250 mg embryogenic tissue) following selection on kanamycin medium. Transgenic plantlets were regenerated through the maturation and germination of somatic embryos. The intensity of GFP fluorescence, observed under a fluorescence microscope, varied from very faint to relatively strong, depending on the transgenic line or part of the transgenic plant. The integration of the genes into the genome of regenerated plantlets was confirmed by Southern blot analysis.  相似文献   

6.
Summary Previous experiments have revealed that the maize transposable element Activator (Ac) may become active during tissue culture. The objective of the present study was to determine whether a second transposable element, Suppressor-mutator (Spm), could also be activated in tissue culture and detected in regenerated maize plants. Approximately 500 R1 progeny of 143 regenerated plants (derived from 49 embryo cell lines) were crossed as males onto an Spm-responsive tester stock. Spm activity was observed in two R1 progeny of a single regenerated plant. This plant had been regenerated from Type II (friable embryogenic) callus of an A188 × B73 genetic background after 8 months in culture; the absence of Spm activity in four other plants regenerated from this same callus demonstrates that Spm activity was not present before culturing. Approximately 20 Spm-homologous DNA sequences were detected in each of the inbreds used to initiate the tissue cultures; it is presumed that one of these became active to give rise to Spm activity.  相似文献   

7.
Summary An alternative method for transforming sweet organe [Citrus sinensis (L.) Osbeck] has been developed. Plasmid DNA encoding the non-destructive selectable marker enhanced green fluorescent protein gene was introduced using polyethylene glycol into protoplasts of ‘Itaborai’ sweet organe isolated from an embryogenic nucellar-derived suspension culture. Following protoplast culture in liquid medium and transfer to solid medium, transformed calluses were identified via expression of the green fluorescent protein, physically separated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. Transgenic plantlets were recovered from germinating somatic embryos and by in vitro rooting of shoots. To expedite transgenic plant recovery, regenerated shoots were also micrografted onto sour orange seedling rootstocks. Presence of the transgene in calluses and regenerated sweet organe plants was verified by gene amplification and Southern analyses. Potential advantages of this transformation system over the commonly used Agrobacterium methods for citrus are discussed.  相似文献   

8.
Summary Somatic embryos and plantlets were regenerated from protoplasts of hybrid larch (Larix × eurolepis) isolated from two embryogenic callus and cell suspension culture lines (L1 and L2). L2, which was highly embryogenic, consistently yielded protoplasts that gave rise to somatic embryos. Centrifugation on a discontinuous medium/Percoll density gradient resulted in accumulation of embryogenic protoplasts in one of the Percoll interfaces. First division frequencies were in the range of 28–39% in line 1 and 18–20% in line 2 in both liquid and agarose-solidified culture media. The critical factor in maintaining high viability of cultures was lowering of osmotic pressure by dilution of the initial medium. The first somatic embryos were detected in 23- to 28-day-old cultures. Some of these developed into plants that were transferred to soil.  相似文献   

9.
Segregation of transgenes in maize   总被引:23,自引:0,他引:23  
Progeny recovered from backcrossed transgenic maize tissue culture regenerants (R0) were analyzed to determine the segregation, expression, and stability of the introduced genes. Transgenic A188×B73 R0 plants (regenerated from embryogenic suspension culture cells transformed by microprojectile bombardment; see [9]) were pollinated with nontransformed B73 pollen. Inheritance of a selectable marker gene, bar, and a nonselectable marker gene, uidA, was analyzed in progeny (R1) representing four independent transformation events. Activity of the bar gene product, phosphinothricin acetyltransferase (PAT), was assessed in plants comprising the four R1 populations. The number of R1 plants containing PAT activity per total number of R1 plants recovered for each population was 2/7, 19/34, 3/14 and 73/73. Molecular analysis confirmed the segregation of bar in three R1 populations and the lack of segregation in one R1 population. Cosegregation analysis indicated genetic linkage of bar and uidA in all four R1 populations. Analysis of numerous R2 plants derived from crossing transformed R1 plants with nontransformed inbreds revealed 1:1 segregation of PAT activity in three of four lines, including the line that failed to segregate in the R1 generation. Integrated copies of bar in one line appeared to be unstable or poorly transmitted.  相似文献   

10.
Embryogenic cultures of Cyclamen coum were established on solid media and in suspension, and their growth characteristics in response to different concentrations of plant growth regulators (PGRs) were evaluated. Embryogenic cultures exhibited a high regeneration capacity of 876 somatic embryos per gram fresh mass. Up to 4.24 × 105 protoplasts per gram of fresh mass were isolated from somatic embryos and embryogenic suspension cultures. Protoplasts derived from both embryos and suspension cultures were successfully cultured in vitro and regenerated into plants via somatic embryogenesis. Phenotypic analyses and flow cytometric measurements revealed that some regenerated plants were tetraploid. About 20% of the protoplast-derived calluses used for regeneration were tetraploid, while tetraploidy was found in 0.9% of the plants regenerated from the embryogenic cultures.  相似文献   

11.
Jayasankar S  Li Z  Gray DJ 《Planta》2000,211(2):200-208
 Proembryogenic masses of grapevine (Vitis vinifera L.) `Chardonnay' (clone 02Ch) were exposed to the culture filtrate of Elsinoe ampelina (deBary) Shear, the causal agent of anthracnose disease. After four or five cycles of recurrent in-vitro selection with medium containing 40% fungal culture filtrate, putative resistant lines RC 1 and RC 2 respectively, were established. The selected lines inhibited the growth of E. ampelina and Fusarium oxysporium (Schlecht.) (isolated from watermelon) in a dual-culture assay and reduced the growth of mycelium on a conditioned-medium test, thus suggesting the involvement of extracellular compounds in resistance. Sodium dodecyl sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis of extracellular proteins from spent suspension-culture medium showed enhanced secretion of new proteins by selected lines. A 36-kDa protein was immunodetected by a chitinase antiserum. This chitinase continued to express constitutively in differentiated somatic embryos and also in the intercellular fluids of plants regenerated from the selected lines. Somatic embryos from selected lines grew uninhibitedly in a medium containing 40% fungal culture filtrate, whereas non-selected (control) somatic embryos became necrotic and died within a few days. Plants regenerated from selected lines exhibited resistance to infection by E. ampelina in both greenhouse tests and detached leaf bioassays. Results suggest that embryogenic cells can be selected for resistance following in-vitro selection, resulting in resistant plants. Whether or not resistant cells pre-existed in the original embryogenic culture or were induced by the selection pressure could not be determined. Received: 12 November 1999 / Accepted: 3 December 1999  相似文献   

12.
Summary Transgenic plants of three Picea species were produced after coculture of embryogenic tissue with the disarmed strain of Agrobacterium tumefaciens C58/pMP90/pBIV10 and selection on medium containing kanamycin. In addition to the nptII selectable gene (conferring resistance to kanamycin), the vector carried the uidA (β-glucuronidase) marker gene. Transformation frequencies were dependent on the species, genotype, and post-cocultivation procedure. Of the three species tested, P. mariana was transformed at the highest frequency, followed by P. glauca and P. abies. The transgenic state of the embryogenic tissue was initially, confirmed by histochemical β-glucuronidase (GUS) assay followed by Southern hybridization. One to over five copies of T-DNA were detected in various transgenic lines analyzed. Transgenic plants were regenerated for all species using modified protocols for maturation and germination of somatic embryos.  相似文献   

13.
Five microsatellite loci (QpZAG1/5, QpZAG9, QpZAG36, MSQ4, MSQ13) were used to test for genetic stability of three somatic embryogenic culture lines of Quercus robur L. and plantlets derived therefrom. DNA variation was detected among somatic embryos within all embryogenic lines, whereas no genetic instability was found among the regenerated plants. Two microsatellite loci revealed variation, and a locus-dependent instability was observed. The most polymorphic and useful microsatellite locus for detecting genetic variation was QpZAG9, with 28.5% of the investigated loci being variable.  相似文献   

14.
Zea mays transformants produced by particle bombardment of embryogenic suspension culture cells of the genotype A188 × B73 and selected on kanamycin or bialaphos were characterized with respect to transgene integration, expression, and inheritance. Selection on bialaphos, mediated by thebar orpat genes, was more efficient than selection on kanamycin, mediated by thenptII gene. Most transformants contained multicopy, single locus, transgene insertion events. A transgene expression cassette was more likely to be rearranged if expression of that gene was not selected for during callus growth. Not all plants regenerated from calli representing single transformation events expressed the transgenes, and a non-selectable gene (uidA) was expressed in fewer plants than was the selectable transgene. Mendelian inheritance of transgenes consistent with transgene insertion at a single locus was observed for approximately two thirds of the transformants assessed. Transgene expression was typically, but not always, predictable in progeny plants-transgene silencing, as well as poor transgene transmission to progeny, was observed in some plant lines in which the parent plants had expressed the transgene.  相似文献   

15.
植物离体培养是植物基因操作中的重要一环,也是植物个体发育研究中基因表达研究的有益参考体系。在继代培养过程中发生的遗传变异有时会使再生植株丧失优良的性状而需加以控制和避免。为此,首先需要了解培养过程中的遗传变异情况。  相似文献   

16.
Transgenic hairy roots were induced from petiole and root segments of in vitro plant Aralia elata, a medicinal woody shrub, after co-cultivation with A. rhizogenes ATCC 15834. The percentage of putative hairy root induction from root segments was higher (26.7%) than petiole explants (10.0%). Hairy roots showed active production of lateral roots with vigorous elongation. Transgenic plants were regenerated from hairy roots via somatic embryogenesis. These plants had wrinkled leaves, short petioles and numerous lateral hairy roots. The RT-PCR analysis showed the expression of rol A, B, C, D, aux 1 and 2 genes differed between the transgenic lines. Endogenous IAA level was higher in transgenic than non-transgenic plants. Conclusively, transgenic hairy roots were developed for first time in A. elata and the transgenic hairy root lines showed distinct morphological growth pattern and gene expression.  相似文献   

17.
Long-term embryogenic lines were repeatedly obtained from nine asparagus (Asparagus officinalis L.) genotypes by the selection of rare events, which consisted of the emergence of either a few somatic embryos or an embryogenic callus from a restricted area of a primary callus. In the first case, somatic embryos emerged from 1 % of calli induced with naphtaleneacetic acid and transferred to a medium without auxin. Isolated and subcultured on hormone free medium, these embryos developed habituated embryogenic lines (H lines) growing by adventive embryogenesis. In the second case, 3 % of primary calli developed then subcultured on 2,4-dichlorophenoxyacetic acid (2,4-D) produced a new type of friable and yellowish-white callus, constituted of clusters of globular somatic embryos which can be continuously maintained on 2,4-D (2,4-D lines). Among 2,4-D lines, two types were identified by subculturing them on hormone–free medium. Half of the 2,4-D lines were habituated and half were 2,4-D dependent. Most plants regenerated from H lines exhibited a strong increase in embryogenic capacity compared to control plants, unlike plants regenerated from the 2,4-D dependent lines. This increased embryogenic capacity was transmitted to the progeny as a monogenic dominant trait. H lines would therefore be issued from mutation(s) occurring in vitro, conferring both the embryogenic and habituated phenotypes. On the contrary, in the 2,4-D dependent lines, the embryogenic processes appeared to remain under exogenous auxin control and no evidence of a mutational origin could be inferred from the behaviour of regenerated plants.  相似文献   

18.
The aim of the present work was to study the effect of the developmental stage of the somatic embryos and of the genotype on the genetic transformation of embryogenic lines of European chestnut (Castanea sativa Mill.) and the cryopreservation of the embryogenic lines that are generated. As an initial source of explants in the transformation experiments, it was found that the use of somatic embryos isolated in the globular stage or clumps of 2–3 embryos in globular/heart-shaped stages was more effective (30%) than when embryos at the cotyledonary stage were used (6.7%). All of the seven genotypes tested were transformed, and transformation efficiency was clearly genotype dependent. Three transgenic lines were successfully cryopreserved using the vitrification procedure, and the stable integration of the uidA gene into the transgenic chestnut plants that were regenerated subsequent to cryopreservation was demonstrated.  相似文献   

19.
Efficient Agrobacterium tumefaciens-mediated transformation was achieved using embryogenic suspension cultures of sweetpotato (Ipomoea batatas (L.) Lam.) cv. Lizixiang. Cell aggregates from embryogenic suspension cultures were cocultivated with the A. tumefaciens strain EHA105 harboring a binary vector pCAMBIA1301 with gusA and hygromycin phosphotransferase II gene (hpt II) genes. Selection culture was conducted using 25 mg l−1 hygromycin. A total of 2,218 plants were regenerated from the inoculated 1,776 cell aggregates via somatic embryogenesis. β-glucuronidase (GUS) assay and PCR, dot blot and Southern blot analyses of the regenerated plants randomly sampled showed that 90.37% of the regenerated plants were transgenic plants. The number of integrated T-DNA copies varied from 1 to 4. Transgenic plants, when transferred to soil in a greenhouse and a field, showed 100% survival. No morphological variations were observed in the ex vitro transgenic plants. These results exceed all transformation experiments reported so far in the literature in quantity of independent events per transformation experiment in sweetpotato.  相似文献   

20.
A genetic transformation method via secondary somatic embryogenesis was developed for alfalfa (Medicago sativa L.). Mature somatic embryos of alfalfa were infected by Agrobacterium strain GV3101 containing the binary vector pCAMBIA2301. pCAMBIA2301 harbors the uidA Gus reporter gene and npt II acts as the selectable marker gene. Infected primary embryos were placed on SH2K medium containing plant growth regulators to induce cell dedifferentiation and embryogenesis under 75 mg/L kanamycin selection. The induced calli were transferred to plant medium free of plant growth regulators for embryo formation while maintaining selection. Somatic embryos germinated normally upon transfer to a germination medium. Plants were recovered and grown in a tissue culture room before transfer to a greenhouse. Histochemical analysis showed high levels of GUS activity in secondary somatic embryos and in different organs of plants recovered from secondary somatic embryos. The presence and stable integration of transgenes in recovered plants were confirmed by polymerase chain reaction using transgene-specific primers and Southern blot hybridization using the npt II gene probe. The average transformation efficiency achieved via secondary somatic embryogenesis was 15.2%. The selection for transformation throughout the cell dedifferentiation and embryogenic callus induction phases was very effective, and no regenerated plants escaped the selection procedure. Alfalfa transformation is usually achieved through somatic embryogenesis using different organs of developed plants. Use of somatic embryos as explants for transformation can avoid the plant development phase, providing a faster procedure for introduction of new traits and facilitates further engineering of previously transformed lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号