首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seabird populations of the Southern Ocean have been responding to climate change for the last three decades and demographic models suggest that projected warming will cause dramatic population changes over the next century. Shift in species distribution is likely to be one of the major possible adaptations to changing environmental conditions. Habitat models based on a unique long-term tracking dataset of king penguin (Aptenodytes patagonicus) breeding on the Crozet Islands (southern Indian Ocean) revealed that despite a significant influence of primary productivity and mesoscale activity, sea surface temperature consistently drove penguins' foraging distribution. According to climate models of the Intergovernmental Panel on Climate Change (IPCC), the projected warming of surface waters would lead to a gradual southward shift of the more profitable foraging zones, ranging from 25 km per decade for the B1 IPCC scenario to 40 km per decade for the A1B and A2 scenarios. As a consequence, distances travelled by incubating and brooding birds to reach optimal foraging zones associated with the polar front would double by 2100. Such a shift is far beyond the usual foraging range of king penguins breeding and would negatively affect the Crozet population on the long term, unless penguins develop alternative foraging strategies.  相似文献   

2.
Due to their restricted foraging range, flightless seabirds are ideal models to study the short-term variability in foraging success in response to environmentally driven food availability. Wind can be a driver of upwelling and food abundance in marine ecosystems such as the Southern Ocean, where wind regime changes due to global warming may have important ecological consequences. Southern rockhopper penguins (Eudyptes chrysocome) have undergone a dramatic population decline in the past decades, potentially due to changing environmental conditions. We used a weighbridge system to record daily foraging mass gain (the difference in mean mass of adults leaving the colony in the morning and returning to the colony in the evening) of adult penguins during the chick rearing in two breeding seasons. We related the day-to-day variability in foraging mass gain to ocean wind conditions (wind direction and wind speed) and tested for a relationship between wind speed and sea surface temperature anomaly (SSTA). Foraging mass gain was highly variable among days, but did not differ between breeding seasons, chick rearing stages (guard and crèche) and sexes. It was strongly correlated between males and females, indicating synchronous changes among days. There was a significant interaction of wind direction and wind speed on daily foraging mass gain. Foraging mass gain was highest under moderate to strong winds from westerly directions and under weak winds from easterly directions, while decreasing under stronger easterly winds and storm conditions. Ocean wind speed showed a negative correlation with daily SSTA, suggesting that winds particularly from westerly directions might enhance upwelling and consequently the prey availability in the penguins'' foraging areas. Our data emphasize the importance of small-scale, wind-induced patterns in prey availability on foraging success, a widely neglected aspect in seabird foraging studies, which might become more important with increasing changes in climatic variability.  相似文献   

3.
Ice is one of the most important drivers of population dynamics in polar organisms, influencing the locations, sizes, and connectivity of populations. Antarctic fur seals, Arctocephalus gazella, are particularly interesting in this regard, as they are concomitantly reliant on both ice‐associated prey and ice‐free coastal breeding areas. We reconstructed the history of this species through the Last Glacial Maximum (LGM) using genomic sequence data from seals across their range. Population size trends and divergence events were investigated using continuous‐time size estimation analysis and divergence time estimation models. The combined results indicated that a panmictic population present prior to the LGM split into two small refugial populations during peak ice extent. Following ice decline, the western refugial population founded colonies at the South Shetlands, South Georgia, and Bouvetøya, while the eastern refugial population founded the colony on Iles Kerguelen. Postglacial population divergence times closely match geological estimates of when these coastal breeding areas became ice free. Given the predictions regarding continued future warming in polar oceans, these responses of Antarctic fur seals to past climate variation suggest it may be worthwhile giving conservation consideration to potential future breeding locations, such as areas further south along the Antarctic Peninsula, in addition to present colony areas.  相似文献   

4.
Variability in ecosystems affects the life history of organisms. In marine ecosystems where interannual variability is high, relationships between fluctuations in oceanographic parameters and top-predator breeding performance are increasingly documented but it is less clear why such relationships exist. In this study, we examined the connections between marine environment fluctuations and breeding performance of a long-lived top-predator, the black-browed albatross Diomedea melanophris at Kerguelen, through study of resource acquisition and allocation processes. Our results show that this population used the same foraging zones and spent similar time foraging year after year, but adult body condition varied between years. Foraging trips are regulated mainly by changes in body condition. During years of low resource availability, birds return to their nest with lower body condition and adults in low body condition were more frequent and therefore were more likely to stop breeding. Poor breeding success was related to the presence of colder waters in the foraging zones of breeding albatrosses as measured by the positive correlation between sea surface temperatures and breeding success measured over 18 years. Lower breeding success was mainly due to failure by inexperienced birds. The results of this study demonstrate how oceanographic conditions affect breeding performance through allocation processes. We compared these results to those at South Georgia where the breeding success is lower and more variable. This population relies mainly on krill, a resource that shows a very variable year-to-year availability compared to fish prey consumed by Kerguelen birds. This study shows that, in the same species, differences in resource variability and availability affect the demographic strategies probably through differences in allocation strategies.  相似文献   

5.
Summary The elephant seal populations breeding on the Crozet and Kerguelen Archipelago were surveyed during the eighties. Elephant seals were observed moving between Kerguelen, Amsterdam, Heard Islands and Vestfold Hills and between Crozet and Prince-Edward Archipelagos. No exchanges were observed between Crozet and Kerguelen Archipelagos suggesting that the two populations are more isolated than previously stated. On the Crozet Archipelago, since 1966, the Possession Island population showed at 70% reduction in numbers of cows ashore and the population is still decreasing. On Kerguelen Island there has been a decline of 44% from 1956 to 1989 but the population appears to have stabilized since 1984. It is suggested that elephant seal populations in the Southern Indian Ocean may have been affected by a change at the trophic level over the last four decades. But the highest rate of decrease observed on the Crozet Archipelago and the fact that the population is still decreasing may be explained by additional factors, in particular by killer whale predation.  相似文献   

6.
C. A. BOST  P. JOUVENTIN 《Ibis》1991,133(1):14-25
Gentoo Penguins Pygoscelis papua on the Crozet Islands have a unique timing of breeding, which occurs in winter and is considerably protracted, differing greatly from that of other populations breeding south of the antarctic convergence. Their breeding biology was intensively studied in 1983–1989, involving daily observations in 1983–1985. Winter breeding is associated with an extension of laying, chick rearing, foraging trips and premoult periods, a lower breeding success and a high weight loss. Annual variations in breeding performances were less pronounced than for southern populations. Variations in breeding success were closely associated with variations in feeding frequencies, fledging and breeding weight, and timing of laying. Early breeders were at an advantage over late breeders in terms of breeding success, growth patterns, fledging weight, duration of foraging trips and premoult period. The unusual winter breeding coincides with a time when food is most readily available for chick rearing in restricted foraging conditions at the edge of the species' breeding range.  相似文献   

7.
Global warming is expected to increase the frequency and intensity of inter-annual variation in Sea-Surface Temperatures (SST) associated with a latitudinal shift of frontal structures in the Southern Ocean. However, the long-term consequences of these major climatic events on the biotic environment remain poorly understood. We studied the effect of SST anomalies in the southern Indian Ocean on the breeding success of eight seabird species, and found these temperature anomalies to have different effects depending on the foraging habitat of the species. The breeding success of four seabird species foraging mainly south of the Polar Front in Antarctic waters was significantly depressed by warm SST occurring mainly in winter and spring, prior to breeding. Conversely, warm SST anomalies were associated with a higher breeding success for species foraging mainly north of the Polar Front, while no significant effect was found for two species that forage on the Kerguelen plateau. These different responses to changes in the SST were also observed for two closely related species (sooty albatross Phoebetria fusca and light-mantled sooty albatross P. palpebrata ) breeding at Kerguelen. These observations highlight the importance of multi-species long-term monitoring programs for understanding the ecological consequences of environmental variability. Our results suggest that the predicted southward shift of the Polar Front caused by oceanic warming could lead to an important decrease in the breeding performance of top predator seabirds depending on the location and changes of their foraging habitat in relation the Polar Front.  相似文献   

8.
Although long‐distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black‐throated blue warbler (Setophaga caerulescens), a double‐brooded long‐distance migrant, we used Pradel models to analyze 25 years of mark–recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late‐season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black‐throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species.  相似文献   

9.
The white-chinned petrel is a subantarctic seabird that requires urgent implementation of conservation measures for the species. At sea, adults suffer heavy mortality due to fisheries' practices. On land, introduced rats prey on chicks at several localities, and we test here if and how rats can be efficiently controlled. Since 1994, we have conducted an intensive rat-control program during each breeding season in a white-chinned petrel colony on Ile de la Possession (150 km2; Crozet archipelago, southern Indian Ocean), which had been monitored since 1986. On the same island, a control white-chinned petrel colony, where no poisoning occurred, was also monitored, and we assessed the seasonal variations of rat abundance. We compared three situations: high rat-poisoning, low rat-poisoning and control conditions without poisoning. Low-poisoning trials performed in our experimental colony between 1988 and 1991 did not lead to higher chick production than for the previous two control years. However, petrel-breeding success was significantly higher when intensive poisoning occurred (50%) than for the previous years (16%). The duration of our study (8 years before intensive poisoning, plus 8 years afterwards), combined with a comparison of petrel annual breeding success between our experimental and control colonies, allowed us to assess more effectively the impact of rats. Forty-one per cent of breeding failures occurring in non-poisoned areas were attributed to rats. We conclude that threatened insular bird populations can be conserved and restored in localities even where total rat eradication is not possible. However, only intensive and repeated (long-term) poisoning will control rats sufficiently.  相似文献   

10.
1.?Climate warming has led to shifts in the seasonal timing of species. These shifts can differ across trophic levels, and as a result, predator phenology can get out of synchrony with prey phenology. This can have major consequences for predators such as population declines owing to low reproductive success. However, such trophic interactions are likely to differ between habitats, resulting in differential susceptibility of populations to increases in spring temperatures. A mismatch between breeding phenology and food abundance might be mitigated by dietary changes, but few studies have investigated this phenomenon. Here, we present data on nestling diets of nine different populations of pied flycatchers Ficedula hypoleuca, across their breeding range. This species has been shown to adjust its breeding phenology to local climate change, but sometimes insufficiently relative to the phenology of their presumed major prey: Lepidoptera larvae. In spring, such larvae have a pronounced peak in oak habitats, but to a much lesser extent in coniferous and other deciduous habitats. 2.?We found strong seasonal declines in the proportions of caterpillars in the diet only for oak habitats, and not for the other forest types. The seasonal decline in oak habitats was most strongly observed in warmer years, indicating that potential mismatches were stronger in warmer years. However, in coniferous and other habitats, no such effect of spring temperature was found. 3.?Chicks reached somewhat higher weights in broods provided with higher proportions of caterpillars, supporting the notion that caterpillars are an important food source and that the temporal match with the caterpillar peak may represent an important component of reproductive success. 4.?We suggest that pied flycatchers breeding in oak habitats have greater need to adjust timing of breeding to rising spring temperatures, because of the strong seasonality in their food. Such between-habitat differences can have important consequences for population dynamics and should be taken into account in studies on phenotypic plasticity and adaptation to climate change.  相似文献   

11.
During the last decade, increasing information on little auk (Alle alle) biology, ecology and behaviour has been reported. However, only a few of these studies have focused on the breeding population in the Avanersuaq (Thule) district of Northwest Greenland, where 80 % of the global little auk population is estimated to breed. This study reports on the chick diet composition from one of the largest colonies, the Paakitsoq colony, located on the south-eastern margin of the North Water (NOW) Polynya. Results revealed the highest proportion of Calanus hyperboreus, a large lipid-rich copepod, in chick diet reported for any little auk colony. Results confirmed that the cold, highly productive waters of the NOW Polynya are favourable foraging grounds for the little auks during the breeding season. Species diversity within and between the chick meals was low, which probably reflects a high availability of a few preferred prey species. Individual chick meals were generally low in number of prey items and total energy content compared with other published results. This may be explained by a higher feeding frequency or by the samples being collected late in the breeding period (during late chick rearing), when chicks have a reduced growth rate and may require less energy than at earlier developmental stages.  相似文献   

12.
Macaroni penguins have evolved to cope with the highly variable conditions of the Southern Ocean. However, changes in prey supply and patchiness potentially associated with changes in climate and krill fishing activity may be occurring too rapidly for the penguins to adapt. We use a stochastic dynamic programming model to examine how changes in both the mean and patchiness of krill supply may affect the foraging decisions, and therefore breeding success, of female macaroni penguins at South Georgia. We predict that rapid changes in the mean supply of prey will have more of an effect on the condition of the female and chick than changes in prey patchiness, and that changes in foraging behavior compensate for changes in prey up to a threshold point, beyond which breeding success is likely impacted. In particular, we predict that the location of the threshold is affected by whether or not the penguins are adapted to the prey environment in which they are foraging, with the female and chick receiving on average 20% less of their daily energetic requirement if the female is not foraging optimally.  相似文献   

13.
Individual consistency in foraging behaviour can generate behavioural variability within populations and may, ultimately, lead to species diversification. However, individual‐based long‐term behavioural studies are particularly scarce in seabird species. Between 2008 and 2011, breeding Imperial Shags Phalacrocorax atriceps at the Punta León colony, Argentina, were tracked with GPS devices to evaluate behavioural consistency during their foraging trips. Within a breeding season, individuals were highly consistent in the maximum distances they reached from the shore and the colony, as well as in the time invested in flight and diving across consecutive days during early chick rearing. In addition, each individual had its specific foraging area distinct from the foraging area of other individuals. Comparing between early and late chick rearing in the same season, individuals were consistent, to a lesser degree, in the maximum distance they reached from the colony and the shore, increasing in consistency later on in the season. Within the season, females were more consistent than males in the maximum distance they moved from the colony and the shore, the sexes segregated in their foraging areas and individual females were segregated from one another. Twenty‐eight individuals tracked in different breeding seasons were marginally consistent in their trip durations and maximum distance reached from shore across seasons. Among seasons, foraging locations differed between sexes and among individual females. Individuals from this colony exhibited consistency over time in several aspects of foraging behaviour, which may be due to a combination of individual characteristics such as learning abilities, breeding experience or health, as well as targeted prey type and stability of the environment at this location.  相似文献   

14.
Central-place foraging seabirds alter the availability of their prey around colonies, forming a "halo" of reduced prey access that ultimately constrains population size. This has been indicated indirectly by an inverse correlation between colony size and reproductive success, numbers of conspecifics at other colonies within foraging range, foraging effort (i.e. trip duration), diet quality and colony growth rate. Although ultimately mediated by density dependence relative to food through intraspecific exploitative or interference competition, the proximate mechanism involved has yet to be elucidated. Herein, we show that Adélie penguin Pygoscelis adeliae colony size positively correlates to foraging trip duration and metabolic rate, that the metabolic rate while foraging may be approaching an energetic ceiling for birds at the largest colonies, and that total energy expended increases with trip duration although uncompensated by increased mass gain. We propose that a competition-induced reduction in prey availability results in higher energy expenditure for birds foraging in the halo around large colonies, and that to escape the halo a bird must increase its foraging distance. Ultimately, the total energetic cost of a trip determines the maximum successful trip distance, as on longer trips food acquired is used more for self maintenance than for chick provisioning. When the net cost of foraging trips becomes too high, with chicks receiving insufficient food, chick survival suffers and subsequent colony growth is limited. Though the existence of energetic studies of the same species at multiple colonies is rare, because foraging metabolic rate increases with colony size in at least two other seabird species, we suggest that an energetic constraint to colony size may generally apply to other seabirds.  相似文献   

15.
We assessed the effects of environmental variables on the distribution and feeding behaviour of adult Little Terns Sternula albifrons in Ria Formosa Natural Park, Algarve, southern Portugal, in different foraging habitats (main lagoon, salinas and sea) during the breeding seasons, April–July, of 2003–05. Foraging density was higher in the lagoon than in the sea, and at low tide. The number of foraging individuals at sea was independent of tide. Individual Little Terns foraged further from the nearest breeding colony in April and May (courtship feeding and incubation) than in June and July (chick-rearing). During intermediate tidal phases, individuals foraged further from the nearest colony, and followed main lagoon channels, perhaps because stronger currents increased prey availability. Diving activity and foraging success were higher in 2003 than 2004 or 2005, perhaps because of greater availability of marine prey in 2003. Diving rate was higher in July (when independent juveniles began learning how to forage) but diving success was higher in June (chick-rearing) than in other months. The variables selected by the final logistic models reflected four basic needs for the selection of feeding habitats by Little Terns: (1) association between foraging individuals, (2) areas with abundant feeding resources, (3) entrance channels and main lagoon channels with strong currents, and (4) the proximity to areas with alternative feeding resources, the salinas. Areas subjected to strong human pressure were avoided by foraging Little Terns.  相似文献   

16.
Six species of albatrosses breed sympatrically at the Crozet Islands. The population size, masses and measurements of adults, nesting habitats and coloniality, laying, hatching and fledging dates, duration of incubation and brooding shifts are compared. The growth of chicks, diets and feeding methods of the six species are reviewed. Their distribution in the south Indian Ocean is described in relation to the feeding frequency of chicks. Various aspects of ecological isolation among the species are analysed. Overlaps exist in the timing of breeding in the small albatrosses and to a lesser extent in their diet. Differences in the foraging zones at sea appear to be the most important factor in reducing interspecific competition. It is shown that the effective division of resources results from a relative scarcity of resources around the Crozet Islands. Finally the close interrelationship between foraging strategy, breeding biology, diet, chick growth and breeding frequency in the small albatrosses is demonstrated.  相似文献   

17.

Background  

The condition of many marine mammals varies with fluctuations in productivity and food supply in the ocean basin where they forage. Prey is impacted by physical environmental variables such as cyclic warming trends. The weaning weight of northern elephant seal pups, Mirounga angustirostris, being closely linked to maternal condition, indirectly reflects prey availability and foraging success of pregnant females in deep waters of the northeastern Pacific. The aim of this study was to examine the effect of ocean climate on foraging success in this deep-diving marine mammal over the course of three decades, using cohort weaning weight as the principal metric of successful resource accrual.  相似文献   

18.
Griffon Vultures Gyps fulvus in northern Spain were studied between 1969 and 1994. The number of breeding pairs increased from 221 in 1969–1975 to 1395 in 1994. The annual population growth rate decreased in the last 5 years, and this may reflect population regulation through density-dependent phenomena. Breeding success was monitored in 1994 and examined in relation to colony size, density of breeding pairs within a radius of 25 km (regional density), climate, human disturbance and food availability. We also recorded whether the year of first occupation of each nest site was before 1989 or after 1989 and whether or not the nest had a rocky shelter. The probability of successfully raising young declined as the regional density increased, which suggests that resource limitation would take place at foraging sites because the Griffon Vulture scavenges socially and no permanent feeding hierarchies are established. The other significant variable was the year of occupation of the nest; nests occupied after 1989 had a lower probability of raising a chick. The increase in the regional density of Griffon Vultures produced a decrease in the productivity at both optimal and suboptimal nest sites. This suggests that density-dependent regulation of breeding success operates through interference and that all the individuals in a colony are similarly affected. In birds of prey, prevalence of interference or habitat heterogeneity may be dependent on the social strategy of each species in space exploitation.  相似文献   

19.
Long-lived birds often face a dilemma between self-maintenance and reproduction. In order to maximize fitness, some seabird parents alternate short trips to collect food for offspring with long trips for self-feeding (bimodal foraging strategy). In this study, we examined whether temporal and spatial variation in the quality of foraging grounds affect provisioning and fledging success of a long-lived, bimodal forager, the little auk (Alle alle), the most abundant seabird species in the Arctic ecosystem. We predicted that an increase in sea surface temperature (SST), with an associated decrease in the preferred Arctic zooplankton prey, would increase foraging trip durations, decrease chick provisioning rates and decrease chick fledging success. Chick provisioning and survival were observed during three consecutive years (2008–2010) at two colonies with variable foraging conditions in Spitsbergen: Isfjorden and Magdalenefjorden. We found that a change in SST (range 1.6–5.4 °C) did not influence trip durations or provisioning rates. SST was, however, negatively correlated with the number of prey items delivered to a chick. Furthermore, provisioning rates did not influence chick’s probability to fledge; instead, SST was also negatively correlated with fledging probability. This was likely related to the prey availability and quality in the little auk’s foraging grounds. Our findings suggest that predicted warmer climate in the Arctic will negatively influence the ability of parents to provide their chicks, and consequently, the fledging prospects of little auk chicks.  相似文献   

20.
Energy budgets form an integral part of our understanding of animal energetics, particularly when presented in the context of reproduction. In this paper, I created a time-energy budget for a breeding pair of wandering albatrosses (Diomedea exulans) to estimate the annual breeding costs and food requirements of the population at Possession Island, Crozet Archipelago. For a breeding cycle that lasts 356 days on average, a pair uses 2,733 MJ to raise a single chick to fledging. This estimate is 1.21 times higher than previously calculated for wandering albatrosses breeding at Marion Island. Unlike the current analysis, the previous study assumed that foraging costs were constant across all stages of the breeding cycle. Recent evidence shows that foraging costs vary during breeding for wandering albatrosses at Crozet and this is probably true for all populations. Incubation costs have also been shown to be substantially lower than previously determined. Therefore, if a wandering albatross pair at Crozet uses a total of 2,733 MJ to breed, they would need to consume at least 1.7 kg bird–1 day–1 of fresh food, on average, to balance their own energy requirements and to provision a single chick for approximately 278 days. At this rate of food consumption, the breeding population at Crozet would consume approximately 340 tonnes of fresh food per breeding season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号