首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis] is of particular interest because the genome of this legume has experienced divergent domestication. Initially, cowpea was domesticated from wild cowpea in Africa; in Asia a vegetable form of cowpea, yardlong bean, subsequently evolved from cowpea. Information on the genetics of domestication-related traits would be useful for yardlong bean and cowpea breeding programmes, as well as comparative genome study among members of the genus Vigna. The objectives of this study were to identify quantitative trait loci (QTLs) for domestication-related traits in yardlong bean and compare them with previously reported QTLs in closely related Vigna.

Methods

Two linkage maps were developed from BC1F1 and F2 populations from the cross between yardlong bean (V. unguiculata ssp. unguiculata cv.-gr. sesquipedalis) accession JP81610 and wild cowpea (V. unguiculata ssp. unguiculata var. spontanea) accession TVnu457. Using these linkage maps, QTLs for 24 domestication-related traits were analysed and mapped. QTLs were detected for traits related to seed, pod, stem and leaf.

Key Results

Most traits were controlled by between one and 11 QTLs. QTLs for domestication-related traits show co-location on several narrow genomic regions on almost all linkage groups (LGs), but especially on LGs 3, 7, 8 and 11. Major QTLs for sizes of seed, pod, stem and leaf were principally located on LG7. Pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions.

Conclusions

This is the first report of QTLs for domestication-related traits in yardlong bean. The results provide a foundation for marker-assisted selection of domestication-related QTLs in yardlong bean and enhance understanding of domestication in the genus Vigna.  相似文献   

2.
3.
4.
An advanced backcross breeding strategy was used to identify quantitative trait loci (QTLs) associated with eight agronomic traits in a BC2F2 population derived from an interspecific cross between Caiapo, an upland Oryza sativa subsp. japonica rice variety from Brazil, and an accession of Oryza rufipogon from Malaysia. Caiapo is one of the most-widely grown dryland cultivars in Latin America and may be planted as a monoculture or in a multicropping system with pastures. The objectives of this study were: (1) to determine whether trait-enhancing QTLs from O. rufipogon would be detected in 274 BC2F2 families grown under the drought-prone, acid soil conditions to which Caiapo was adapted, (2) to compare the performance with and without pasture competition, and (3) to compare putative QTL-containing regions identified in this study with those previously reported for populations adapted to irrigated, low-land conditions. Based on analyses of 125 SSLP and RFLP markers distributed throughout the genome and using single-point, interval, and composite interval mapping, two putative O. rufipogon derived QTLs were detected for yield, 13 for yield components, four for maturity and six for plant height.We conclude that advanced backcross QTL analysis offers a useful germplasm enhancement strategy for the genetic improvement of cultivars adapted to stress-prone environments. Although the phenotypic performance of the wild germplasm would not suggest its value as a breeding parent, it is noteworthy that 56% of the trait-enhancing QTLs identified in this study were derived from O. rufipogon. This figure is similar to the 51% of favorable QTLs derived from the same parent in crosses with a high-yielding hybrid rice cultivar evaluated under irrigated conditions in a previous study. In conclusion, parallel studies in rice using AB-QTL analysis provide increasing evidence that certain regions of the rice genome are likely to harbor genes of interest for plant improvement in multiple environments. Received: 3 September 1999 / Accepted: 16 May 2000  相似文献   

5.
6.
Fine mapping QTLs and identifying candidate genes for cotton fibre‐quality and yield traits would be beneficial to cotton breeding. Here, we constructed a high‐density genetic map by specific‐locus amplified fragment sequencing (SLAF‐seq) to identify QTLs associated with fibre‐quality and yield traits using 239 recombinant inbred lines (RILs), which was developed from LMY22 (a high‐yield Gossypium hirsutumL. cultivar) × LY343 (a superior fibre‐quality germplasm with GbarbadenseL. introgressions). The genetic map spanned 3426.57 cM, including 3556 SLAF‐based SNPs and 199 SSR marker loci. A total of 104 QTLs, including 67 QTLs for fibre quality and 37 QTLs for yield traits, were identified with phenotypic data collected from 7 environments. Among these, 66 QTLs were co‐located in 19 QTL clusters on 12 chromosomes, and 24 QTLs were detected in three or more environments and determined to be stable. We also investigated the genomic components of LY343 and their contributions to fibre‐related traits by deep sequencing the whole genome of LY343, and we found that genomic components from G. hirsutum races (which entered LY343 via its Gbarbadense parent) contributed more favourable alleles than those from G. barbadense. We further identified six putative candidate genes for stable QTLs, including Gh_A03G1147 (GhPEL6), Gh_D07G1598 (GhCSLC6) and Gh_D13G1921 (GhTBL5) for fibre‐length QTLs and Gh_D03G0919 (GhCOBL4), Gh_D09G1659 (GhMYB4) and Gh_D09G1690 (GhMYB85) for lint‐percentage QTLs. Our results provide comprehensive insight into the genetic basis of the formation of fibre‐related traits and would be helpful for cloning fibre‐development‐related genes as well as for marker‐assisted genetic improvement in cotton.  相似文献   

7.
Cowpea (Vigna unguiculata (L.) Walp.) is a grain legume commonly grown and consumed in many parts of the tropics and subtropics. A genetic linkage map was constructed using simple sequence repeat (SSR) markers and a recombinant inbred (RI) population of159 individuals derived from a cross between the breeding line 524B, a California Blackeye, and 219-01, a perennial wild cowpea from Kenya. Out of 912 primer combinations predicted to amplify SSRs in cowpea, 639 reliably produced amplification products in PCR assays and 202 (31.6%) were polymorphic between the two parents. These polymorphic SSRs were used to construct a genetic map consisting of 11 linkage groups (LGs) spanning 677 cM, with an average distance between markers of 3 cM. Agronomic traits related to domestication (seed weight, pod shattering) were analyzed together with the genotypic data. Six quantitative trait loci (QTL) for seed size were revealed with the phenotypic variation ranging from 8.9 to 19.1%. Four QTL for pod shattering were identified with the phenotypic variation ranging from 6.4 to 17.2%. The QTL for seed size and pod shattering mainly cluster in two areas of LGs 1 and 10, facilitating the use of marker-assisted selection to eliminate undesirable wild phenotypes in breeding activities involving introgression of traits from wild germplasm. The generation of an SSR-based molecular map and additional trait-linked markers also contributes to the expanding tool kit available to cowpea breeders, especially in Africa.  相似文献   

8.
Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement.  相似文献   

9.
Cultivated peanut (Arachis hypogaea L.) is an important oil and cash crop. Pod size is one of the major traits determining yield and commodity characteristic of peanut. Fine mapping of quantitative trait locus (QTL) and identification of candidate genes associated with pod size are essential for genetic improvement and molecular breeding of peanut varieties. In this study, a major QTL related to pod size, qAHPS07, was fine mapped to a 36.46 kb interval on chromosome A07 using F2, recombinant inbred line (RIL) and secondary F2 populations. qAHPS07 explained 38.6%, 23.35%, 37.48%, 25.94% of the phenotypic variation for single pod weight (SPW), pod length (PL), pod width (PW) and pod shell thickness (PST), respectively. Whole genome resequencing and gene expression analysis revealed that a RuvB-like 2 protein coding gene AhRUVBL2 was the most likely candidate for qAHPS07. Overexpression of AhRUVBL2 in Arabidopsis led to larger seeds and plants than the wild type. AhRUVBL2-silenced peanut seedlings represented small leaves and shorter main stems. Three haplotypes were identified according to three SNPs in the promoter of AhRUVBL2 among 119 peanut accessions. Among them, SPW, PW and PST of accessions carrying Hap_ATT represent 17.6%, 11.2% and 26.3% higher than those carrying Hap_GAC,respectively. In addition, a functional marker of AhRUVBL2 was developed. Taken together, our study identified a key functional gene of peanut pod size, which provides new insights into peanut pod size regulation mechanism and offers practicable markers for the genetic improvement of pod size-related traits in peanut breeding.  相似文献   

10.

Key message

The QTLs analyses here reported demonstrate the significant role of both individual additive and epistatic effects in the genetic control of seed quality traits in the Andean common bean.

Abstract

Common bean shows considerable variability in seed size and coat color, which are important agronomic traits determining farmer and consumer acceptability. Therefore, strategies must be devised to improve the genetic base of cultivated germplasm with new alleles that would contribute positively to breeding programs. For that purpose, a population of 185 recombinant inbred lines derived from an Andean intra-gene pool cross, involving an adapted common bean (PMB0225 parent) and an exotic nuña bean (PHA1037 parent), was evaluated under six different—short and long-day—environmental conditions for seed dimension, weight, color, and brightness traits, as well as the number of seed per pod. A multi-environment Quantitative Trait Loci (QTL) analysis was carried out and 59 QTLs were mapped on all linkage groups, 18 of which had only individual additive effects, while 27 showed only epistatic effects and 14 had both individual additive and epistatic effects. Multivariate models that included significant QTL explained from 8 to 68  % and 2 to 15 % of the additive and epistatic effects, respectively. Most of these QTLs were consistent over environment, though interactions between QTLs and environments were also detected. Despite this, QTLs with differential effect on long-day and short-day environments were not found. QTLs identified were positioned in cluster, suggesting that either pleiotropic QTLs control several traits or tightly linked QTLs for different traits map together in the same genomic regions. Overall, our results show that digenic epistatic interactions clearly play an important role in the genetic control of seed quality traits in the Andean common bean.  相似文献   

11.
12.
Zhang  Hui  Wang  Yuexing  Deng  Ce  Zhao  Sheng  Zhang  Peng  Feng  Jie  Huang  Wei  Kang  Shujing  Qian  Qian  Xiong  Guosheng  Chang  Yuxiao 《中国科学:生命科学英文版》2022,65(2):398-411

High-quality rice reference genomes have accelerated the comprehensive identification of genome-wide variations and research on functional genomics and breeding. Tian-you-hua-zhan has been a leading hybrid in China over the past decade. Here, de novo genome assembly strategy optimization for the rice indica lines Huazhan (HZ) and Tianfeng (TF), including sequencing platforms, assembly pipelines and sequence depth, was carried out. The PacBio and Nanopore platforms for long-read sequencing were utilized, with the Canu, wtdbg2, SMARTdenovo, Flye, Canu-wtdbg2, Canu-SMARTdenovo and Canu-Flye assemblers. The combination of PacBio and Canu was optimal, considering the contig N50 length, contig number, assembled genome size and polishing process. The assembled contigs were scaffolded with Hi-C data, resulting in two “golden quality” rice reference genomes, and evaluated using the scaffold N50, BUSCO, and LTR assembly index. Furthermore, 42,625 and 41,815 non-transposable element genes were annotated for HZ and TF, respectively. Based on our assembly of HZ and TF, as well as Zhenshan97, Minghui63, Shuhui498 and 9311, comprehensive variations were identified using Nipponbare as a reference. The de novo assembly strategy for rice we optimized and the “golden quality” rice genomes we produced for HZ and TF will benefit rice genomics and breeding research, especially with respect to uncovering the genomic basis of the elite traits of HZ and TF.

  相似文献   

13.
The objective of this research was to determine the quantitative trait loci (QTLs) controlling phenological traits (days to flowering, days to end of flowering, days to harvest as green pod, and days to maturity), seed size traits (seed length, seed height, seed width, and seed weight), and seed quality traits (water absorption, and coat proportion), in common bean. A population of 104 F7 recombinant inbred lines (RILs) derived from an inter-gene pool cross between Xana, and Cornell 49242, was used to develop a genetic linkage map including 175 AFLPs, 27 microsatellites, 30 SCARs, 33 ISSRs, 12 RAPDs, 13 loci codifying for seed proteins, and the four genes Fin,fin (growth habit); Asp,asp (seed coat shininess); P,p (seed color); and I,i (resistance to bean common mosaic virus). The map has a total length of 1,042 cM distributed across 11 linkage groups aligned to those of the core linkage map of bean using common molecular markers as anchor points. The QTL analyses were carried out over three environments using the mean environment data with composite interval mapping. Thirty-one QTLs for ten traits were found to be significant in at least one environment and in the mean environment data, the number of significant QTLs identified per trait ranging from two to five. Twenty-seven of these QTLs mapped forming clusters in eight different chromosomal regions. The rationale for this clustered mapping and the possible relationship between some QTLs for phenological traits and the genes Fin and I are discussed.  相似文献   

14.
Divergence of flowering genes in soybean   总被引:2,自引:0,他引:2  
Soybean genome sequences were blasted with Arabidopsis thaliana regulatory genes involved in photoperiod-dependent flowering. This approach enabled the identification of 118 genes involved in the flowering pathway. Two genome sequences of cultivated (Williams 82) and wild (IT182932) soybeans were employed to survey functional DNA variations in the flowering-related homologs. Forty genes exhibiting nonsynonymous substitutions between G. max and G. soja were catalogued. In addition, 22 genes were found to co-localize with QTLs for six traits including flowering time, first flower, pod maturity, beginning of pod, reproductive period, and seed filling period. Among the genes overlapping the QTL regions, two LHY/CCA1 genes, GI and SFR6 contained amino acid changes. The recently duplicated sequence regions of the soybean genome were used as additional criteria for the speculation of the putative function of the homologs. Two duplicated regions showed redundancy of both flowering-related genes and QTLs. ID 12398025, which contains the homeologous regions between chr 7 and chr 16, was redundant for the LHY/CCA1 and SPA1 homologs and the QTLs. Retaining of the CRY1 gene and the pod maturity QTLs were observed in the duplicated region of ID 23546507 on chr 4 and chr 6. Functional DNA variation of the LHY/CCA1 gene (Glyma07g05410) was present in a counterpart of the duplicated region on chr 7, while the gene (Glyma16g01980) present in the other portion of the duplicated region on chr 16 did not show a functional sequence change. The gene list catalogued in this study provides primary insight for understanding the regulation of flowering time and maturity in soybean.  相似文献   

15.
The Pacific oyster (Crassostrea gigas) is one of the most important oysters cultured worldwide. To analyze the oyster genome and dissect growth-related traits, we constructed a sex-averaged linkage map by combining 64 genomic simple sequence repeats, 42 expressed sequence tag-derived SSRs, and 320 amplified fragment length polymorphism markers in an F1 full-sib family. A total of 426 markers were assigned to 11 linkage groups, spanning 558.2 cM with an average interval of 1.3 cM and 94.7% of genome coverage. Segregation distortion was significant for 18.8% of the markers (P < 0.05), and distorted markers tended to occur on some genetic regions or linkage groups. Most growth-related quantitative traits were highly significantly (P < 0.01) correlated, and principal component analysis obtained four principal components. Quantitative trait locus (QTL) analysis identified three significant QTLs for two principal components, which explained 0.6–13.9% of the phenotypic variation. One QTL for sex was detected on linkage group 6, and the inheritabilities of sex for parental alleles and maternal alleles on that locus C15 are 39.8% and 0.01%, respectively. The constructed linkage map and determined QTLs can provide a tool for further genetic analysis of the traits and be potential for marker-assisted selection in C. gigas breeding.  相似文献   

16.

Key message

Co-localized intervals and candidate genes were identified for major and stable QTLs controlling pod weight and size on chromosomes A07 and A05 in an RIL population across four environments.

Abstract

Cultivated peanut (Arachis hypogaea L.) is an important legume crops grown in > 100 countries. Hundred-pod weight (HPW) is an important yield trait in peanut, but its underlying genetic mechanism was not well studied. In this study, a mapping population (Xuhua 13 × Zhonghua 6) with 187 recombinant inbred lines (RILs) was developed to map quantitative trait loci (QTLs) for HPW together with pod length (PL) and pod width (PW) by both unconditional and conditional QTL analyses. A genetic map covering 1756.48 cM was constructed with 817 markers. Additive effects, epistatic interactions, and genotype-by-environment interactions were analyzed using the phenotyping data generated across four environments. Twelve additive QTLs were identified on chromosomes A05, A07, and A08 by unconditional analysis, and five of them (qPLA07, qPLA05.1, qPWA07, qHPWA07.1, and qHPWA05.2) showed major and stable expressions in all environments. Conditional QTL mapping found that PL had stronger influences on HPW than PW. Notably, qHPWA07.1, qPLA07, and qPWA07 that explained 17.93–43.63% of the phenotypic variations of the three traits were co-localized in a 5 cM interval (1.48 Mb in physical map) on chromosome A07 with 147 candidate genes related to catalytic activity and metabolic process. In addition, qHPWA05.2 and qPLA05.1 were co-localized with minor QTL qPWA05.2 to a 1.3 cM genetic interval (280 kb in physical map) on chromosome A05 with 12 candidate genes. This study provides a comprehensive characterization of the genetic components controlling pod weight and size as well as candidate QTLs and genes for improving pod yield in future peanut breeding.
  相似文献   

17.
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC1F1 plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs.  相似文献   

18.
Development of high-yielding wheat varieties with good end-use quality has always been a major concern for wheat breeders. To genetically dissect quantitative trait loci (QTLs) for yield-related traits such as grain yield, plant height, maturity, lodging, test weight and thousand-grain weight, and for quality traits such as grain and flour protein content, gluten strength as evaluated by mixograph and SDS sedimentation volume, an F1-derived doubled haploid (DH) population of 185 individuals was developed from a cross between a Canadian wheat variety “AC Karma” and a breeding line 87E03-S2B1. A genetic map was constructed based on 167 marker loci, consisting of 160 microsatellite loci, three HMW glutenin subunit loci: Glu-A1, Glu-B1 and Glu-D1, and four STS-PCR markers. Data for investigated traits were collected from three to four environments in Manitoba, Canada. QTL analyses were performed using composite interval mapping. A total of 50 QTLs were detected, 24 for agronomic traits and 26 for quality-related traits. Many QTLs for correlated traits were mapped in the same genomic regions forming QTL clusters. The largest QTL clusters, consisting of up to nine QTLs, were found on chromosomes 1D and 4D. HMW glutenin subunits at Glu-1 loci had the largest effect on breadmaking quality; however, other genomic regions also contributed genetically to breadmaking quality. QTLs detected in the present study are compared with other QTL analyses in wheat.  相似文献   

19.
We report here the RFLP mapping of quantitative triat loci (QTLs) that affect some important agronomic traits in cultivated rice. An anther culturederived doubled haploid (DH) population was established from a cross between an indica and a japonica rice variety. On the basis of this population a molecular linkage map comprising 137 markers was constructed that covered the rice genome at intervals of 14.8cM on average. Interval mapping of the linkage map was used to locate QTLs for such important agronomic traits as heading date, plant height, number of spikelets per panicle, number of grains Per panicle, 1000-grain weight and percentage of seed set. Evidence of genotype-byenvironment interaction was found by comparing QTL maps of the same population grown in three diverse environments. A total of 22 QTLs for six agronomic traits were detected that were significant in at least one environment, but only 7 were significant in all three environments, 7 were significant in two environments and 8 could only be detected in a single environment. However, QTL-by-environment interaction was traitdependent. QTLs for spikelets and grains per panicle were common across environments, while traits like heading date and plant height were more sensitive to environment.  相似文献   

20.
Mapping loci controlling flowering time in Brassica oleracea   总被引:6,自引:0,他引:6  
The timing of the transition from vegetative to reproductive phase is a major determinant of the morphology and value of Brassica oleracea crops. Quantitative trait loci (QTLs) controlling flowering time in B. oleracea were mapped using restriction fragment length polymorphism (RFLP) loci and flowering data of F3 families derived from a cabbage by broccoli cross. Plants were grown in the field, and a total of 15 surveys were made throughout the experiment at 5–15 day intervals, in which plants were inspected for the presence of flower buds or open flowers. The flowering traits used for data analysis were the proportion of annual plants (PF) within each F3 family at the end of the experiment, and a flowering-time index (FT) that combined both qualitative (annual/biennial) and quantitative (days to flowering) information. Two QTLs on different linkage groups were found associated with both PF and FT and one additional QTL was found associated only with FT. When combined in a multi-locus model, all three QTLs explained 54.1% of the phenotypic variation in FT. Epistasis was found between two genomic regions associated with FT. Comparisons of map positions of QTLs in B. oleracea with those in B. napus and B. rapa provided no evidence for conservation of genomic regions associated with flowering time between these species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号