首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Climate and land use changes are two major pervasive and growing global causes of rapid changes in the distribution patterns of biodiversity, challenging the future effectiveness of protected areas (PAs), which were mainly designed based on a static view of biodiversity. Therefore, evaluating the effectiveness of protected areas for protecting the species threatened by climate and land use change is critical for future biodiversity conservation.

Location

China.

Methods

Here, using distributions of 200 Chinese Theaceae species and ensemble species distribution models, we identified species threatened by future climate and land use change (i.e. species with predicted loss of suitable habitat ≥30%) under scenarios incorporating climate change, land use change and dispersal. We then estimate the richness distribution patterns of threatened species and identify priority conservation areas and conservation gaps of the current PA network.

Results

Our results suggest that 36.30%–51.85% of Theaceae species will be threatened by future climate and land use conditions and that although the threatened species are mainly distributed at low latitudes in China under both current and future periods, the mean richness of the threatened species per grid cell will decline by 0.826–3.188 species by the 2070s. Moreover, we found that these priority conservation areas are highly fragmented and that the current PA network only covers 14.21%–20.87% of the ‘areas worth exploring’ and 6.91%–7.91% of the ‘areas worth attention’.

Main Conclusions

Our findings highlight the necessity of establishing new protected areas and ecological corridors in priority conservation areas to protect the threatened species. Moreover, our findings also highlight the importance of taking into consideration the potential threatened species under future climate and land use conditions when designating priority areas for biodiversity conservation.  相似文献   

2.

Aim

Species richness is a measure of biodiversity often used in spatial conservation assessments and mapped by summing species distribution maps. Commission errors inherent those maps influence richness patterns and conservation assessments. We sought to further the understanding of the sensitivity of hotspot delineation methods and conservation assessments to commission errors, and choice of threshold for hotspot delineation.

Location

United States.

Methods

We created range maps and 30‐m and 1‐km resolution habitat maps for terrestrial vertebrates in the United States and generated species richness maps with each dataset. With the richness maps and the GAP Protected Areas Dataset, we created species richness hotspot maps and calculated the proportion of hotspots within protected areas; calculating protection under a range of thresholds for defining hotspots. Our method allowed us to identify the influence of commission errors by comparing hotspot maps.

Results

Commission errors from coarse spatial grain data and lack of porosity in the range data inflated richness estimates and altered their spatial patterns. Coincidence of hotspots from different data types was low. The 30‐m hotspots were spatially dispersed, and some were very long distances from the hotspots mapped with coarser data. Estimates of protection were low for each of the taxa. The relationship between estimates of hotspot protection and threshold choice was nonlinear and inconsistent among data types (habitat and range) and grain size (30‐m and 1‐km).

Main conclusions

Coarse mapping methods and grain sizes can introduce commission errors into species distribution data that could result in misidentifications of the regions where hotspots occur and affect estimates of hotspot protection. Hotspot conservation assessments are also sensitive to choice of threshold for hotspot delineation. There is value in developing species distribution maps with high resolution and low rates of commission error for conservation assessments.  相似文献   

3.

Aim

Species require sufficiently large and connected areas of suitable habitat to support populations that can persist through change. With extensive alteration of unprotected natural habitat, there is increasing risk that protected areas (PAs) will be too small and isolated to support viable populations in the long term. Consequently, this study addresses the urgent need to assess the capacity of PA estates to facilitate species persistence.

Location

Australia.

Methods

We undertake the first assessment of the capacity of the Australian National Reserve System (NRS) to protect 90 mammal species in the long term, given the size and distribution of individual PAs across the landscape relative to species’ habitat and minimum viable area (MVA) requirements and dispersal capabilities.

Results

While all mammal ranges are represented within the NRS, the conservation capacity declined notably when we refined measures of representation within PAs to include species’ habitat and area requirements. The NRS could not support any viable populations for between three and seven species, depending on the MVA threshold used, and could support less than 10 viable populations for up to a third of the species. Planning and managing PAs for persistence emerged as most important for species with large MVA requirements and limited dispersal capabilities.

Main conclusions

The key species characteristics we identify can help managers recognize species at risk within the current PA estate and guide the types of strategies that would best reduce this risk. We reveal that current representation‐based assessments of PA progress are likely to overestimate the long‐term success of PA estates, obscuring vulnerabilities for many species. It is important that conservation planners and managers are realistic and explicit regarding the role played by different sizes and distributions of PAs, and careful in assuming that the representation of a species within a PA equates to its long‐term conservation.
  相似文献   

4.
Biodiversity is being lost at an unprecedented rate, and resources for conservation efforts are limited. This is particularly problematic in the Great Plains of North America, where land-cover conversion for agriculture and energy production has reduced habitat for many species. In the U.S. portion of the Great Plains, a growing human population and a concomitant increasing need for food, fiber, and energy have caused landscape transformations that have resulted in over 700 vertebrate species currently being listed by state and federal conservation agencies as being at-risk in this region. Conservation efforts for such a large number of species will be most efficient when applied to areas with large numbers of these species, but such areas have never before been identified. We overlaid range maps created by the U.S. Geological Survey’s Gap Analysis Program for terrestrial vertebrate species to identify hotspots of high concentrations of U.S. state-defined Species of Greatest Conservation Need (SGCN; species that have identified as being rare or otherwise vulnerable enough to warrant conservation action in a given state) in the short- and mixed-grass prairie ecoregions of the southern and central Great Plains of the United States. We identified hotspots for species currently listed as SGCN as well as those pending designation, and a combined (current and pending) group. We then used data from the U.S. Geological Survey’s Protected Areas Database on land ownership and from the U.S. Department of Agriculture’s National Agricultural Statistics Service on land use/land cover to quantify the types of land ownership and land use/land cover types in hotspots to give land managers necessary information to address conservation of at-risk species in the Great Plains. Sufficient data were present for examination of 289 at-risk terrestrial vertebrate species. Hotspots of these species were located mostly on state- or federally-managed land in eastern New Mexico, Colorado, and west Texas. The current hottest hotspots were associated with areas with more natural/less anthropogenic forms of land use/land cover; areas with the lowest numbers of SGCNs had proportionately more cropland and less grassland than did hotspots. Identifying regional hotspots of at-risk biodiversity, and describing land use/land cover features associated with such areas, offers an opportunity to take a multi-species approach in more precisely establishing areas of conservation concern in the U.S.  相似文献   

5.
在保护优先区规划中,有必要考虑气候变化的潜在风险并关注物种在气候驱动下的扩散格局。基于未来生物气候数据、地形多样性数据以及土地利用数据,应用Omniscape算法,对21世纪中叶(2040-2061年)气候变化情景下京津冀地区陆生哺乳动物的扩散进行全域连通性建模并与当前情景对比分析,识别出生物多样性保护优先区。结果表明:区域尺度下,气候变化风险使得高连通性的区域逐渐从平原向山区转移,分布趋于集中;斑块尺度下,林缘连通性较高,而位于林地或草地边缘的耕地连通性低。在此基础上,共识别生物多样性保护优先区共51786 km2,其中涵养区(占56.4%)在当前和未来的连通状况均较为良好;优化区(占38.4%)应提升生境质量以满足未来连通性的更高需求;而修复区(占5.22%)面临的气候变化风险较高,亟需进行生态修复以免在未来出现连通性夹点。本研究通过评估京津冀地区两种情景下的全域连通格局,为生物多样性保护的气候适应性规划提供了科学依据。  相似文献   

6.
7.
金宇  周可新  高吉喜  穆少杰  张小华 《生态学报》2016,36(23):7702-7712
准确可靠地识别国家重点保护陆生脊椎动物物种的优先保护区,是生物多样性保护的热点问题之一。采用随机森林(random forests)模型,基于12个环境变量,对中国263种国家重点保护陆生脊椎动物建模,并预测各个物种在背景点的适生概率,迭加计算得到国家重点保护陆生脊椎动物物种的生境适宜性指数。此外,基于对生境适宜性指数的空间自相关分析,识别和确定国家重点保护陆生脊椎动物物种优先保护区,并对优先保护区目前的被保护情况进行分析。结果表明,国家重点保护陆生脊椎动物物种的优先保护区的面积为103.16万km~2,约占我国国土面积的10.90%。优先保护区主要分布在我国的西部地区,包括西南地区的秦岭-大巴山山区、云南省与印度及缅甸的交界地区、武陵山山区、喜马拉雅山-横断山脉山区、阿尔泰山脉山区、天山山脉山区、昆仑山山脉山区;东北的大、小兴安岭、东北-华南沿海地区及长江中下游地区有少量分布。优先保护区中被保护的面积为50.40万km~2,占优先保护区总面积的48.86%,保护率偏低,未被充分保护。利用系统聚类分析,将未被保护的优先保护区划分成3种优先保护顺序,以期为相关部门的决策提供科学依据,更好地保护生物多样性。  相似文献   

8.

Aim

(i) To determine whether area and connectivity of temporary ponds can predict plant species diversity, and the diversity and abundance of different plant life histories; (ii) To explore whether pond connectivity with the river prior to river regulation predicts better plant diversity patterns than current pond connectivity, suggestive of possible effects of connectivity loss.

Location

Eastern Carpathian Mountains, Romania, Europe.

Methods

We fitted linear and generalized linear models (LM and GLM) to examine whether pond area and current distance from the Olt River predict plant species richness, Shannon diversity and relative cover of different social behaviour types and overall plant species richness and Shannon diversity. Using historical maps, we measured pond distance from the river ca. 60 years before the Olt River was regulated, and we refitted the LM and GLM models using pond area and past distance from the river as independent variables.

Results

Total plant species richness increased with pond area, and it decreased with the distance from the river, but total plant Shannon diversity index was affected, positively, only by pond area. The strength of responses to pond area and connectivity of species richness, Shannon diversity and relative cover varied across the different social behaviour types. Past and current distances between ponds and riverbeds had similar effects on plant diversity, with some evidence for stronger effect of the present connectivity on specialist species Shannon diversity and a weaker effect on disturbance tolerants, generalists and competitors.

Main Conclusions

Pond area and connectivity with the landscape are important predictors of the diversity of plant life history strategies, and therefore, useful tools in pond conservation. Consistent species richness and Shannon diversity responses of wetland specialists to pond area and connectivity make this life history type well suited for monitoring pond condition.  相似文献   

9.

Aim

The mountainous regions in SW Asia harbour a high number of endemic species, many of which are restricted to the high-elevation zone. The (sub)alpine habitats of the region are under particular threat due to global change, but their biodiversity hotspots and conservation status have not been investigated so far.

Location

Subalpine-alpine habitats of SW Asia.

Methods

Distribution data of all (sub)alpine vascular plant species of the region were compiled, resulting in 19,680 localities from 1672 (sub)alpine species, the majority of them being restricted to the region (76%). Six quantitative indices of species diversity were used on the basis of 0.5° × 0.5° grid cells to identify (sub)alpine hotspots. Hotspots whose surface area in the (sub)alpine zone was covered by nature reserves maximally by 10% were defined as conservation gaps.

Results

A high proportion (80%) of the endemic species of the study area is range-restricted and narrowly distributed. The results of all six indices were highly correlated. Using the top 5%, 10% and 20% richest cells supported by any index, 32, 53 and 98 cells, respectively, were identified as Hotspots. Almost 60% of these Hotspots at all three levels were identified as unprotected (i.e. constituted Conservation Gaps). Generally, only 22%, 18% and 16%, respectively, of the alpine surface area of the identified Hotspots were covered by nature reserves for the top 5%, 10% and 20% richest cells, respectively.

Main conclusions

Although the rate of protection in (sub)alpine Hotspots exceeds that of the entire region it is still insufficient, because these Hotspots are much richer in endemic and in range-restricted species, but at the same time are under high pressure of global change. Therefore, the establishment of new nature reserves with high conservation efficiency in (sub)alpine habitats with a particular focus on the identified Hotspots is strongly recommended.  相似文献   

10.

Aim

The maintenance of broad-scale connectivity patterns is suggested as a sustainable strategy for biodiversity preservation. However, explicit approaches for quantifying the functional role of different areas in biogeographic connectivity have been elusive. Freshwaters are spatially structured ecosystems critically endangered because of human activities and global change, demanding connectivity-based approaches for their conservation. Mass effects—the increase in local diversity by immigration—and corridor effects—the connections with distant communities—are basic and relevant mechanisms connecting diversity with landscape configuration. Here, we identified freshwater hotspots areas for mass and corridor effects across Europe.

Location

Europe.

Methods

Using satellite images, we quantified the areas of ephemeral, temporal and permanent freshwaters. The landscape structure of the freshwater ecoregions was represented as a directed-graph, and the link weights were determined by the distance between cells and the water cover. Three centrality metrics were used to rank freshwater areas with respect to their potential role in dispersal-mediated mechanisms. Out-degree represents the potential of an area to operate as a diversity source to other regions. In-degree reflects the importance that incoming dispersal may have in local diversity. Betweenness refers to the importance of local areas for connecting other distant areas.

Results

We detected great concentrations of source hotspots on the northern regions associated to lentic ecosystems, main European rivers acting as ecological corridors for all freshwaters, and a mixed distribution of connectivity hotspots in southern and Mediterranean ecoregions, associated with lentic and/or lotic systems.

Main Conclusions

We showed an explicit connection between landscape structure and dispersal process at large geographic scales, highlighting hotspots of connectivity for the European waterscape. The spatial distribution of hotspots points to differences in landscape configurations potentially accounting for biogeographic diversity patterns and for mechanisms that have to be considered in conservation planning.  相似文献   

11.
While the protected area (PA) covers >15% of the planet's terrestrial land area and continues to expand, factors determining its effectiveness in conserving endangered species are being debated. We investigated the links between direct anthropogenic pressures, socioeconomic settings, and the coverage of vertebrate taxa by China's PA network, and indicated that high socioeconomic status and low levels of human pressure correlate with high species coverage, with threatened mammals more effectively conserved than reptiles or amphibians. Positive links between conservation outcomes and socioeconomic progress appear linked to local livelihood improvements triggering positive perceptions of local PAs—aided further by ecological compensation and tourism schemes introduced in wealthy areas and reinforced by continued positive conservation outcomes. Socioeconomic development of China's less developed regions might assist regional PA efficiency and achievement of the Kunming-Montreal Global Biodiversity Framework, while also addressing potential shortcomings from an insufficient past focus on socioeconomic impacts for biodiversity conservation.  相似文献   

12.

Aim

Comprehensive biodiversity protection necessitates the consideration of multiple indexes of diversity, and how the distribution patterns of priority areas may shift under climate change. Galliformes is a globally endangered avian order vulnerable to climate change that provide an important indicator for wildlife conservation effectiveness. Here, we identified priority areas for conserving Galliformes taxonomic, phylogenetic, and functional diversity in China and their spatial dynamics subject to climate change, and examined how well existing protected areas align with current and future priority areas.

Location

China.

Methods

We applied species distribution modelling and Zonation algorithms to identify conservation priority area dynamics for 47 galliform species across three biodiversity indexes subject to three future climate change scenarios to 2050s and 2070s. We overlaid these identified priority areas onto existing national nature reserves and national parks to assess and project their effectiveness.

Results

Current priority areas proved spatially incongruent between indexes, with an optimal area overlap comprising just 10.3% of China's land area, lying largely outside of existing protected areas. Furthermore, over 80% of modelled optimal priority areas currently lacked formal conservation status. Future priority areas will shift substantially under climate change, to an extent dependent on greenhouse gas emission scenarios. Nevertheless, we identified five large regions where optimal Galliformes diversity indexes should remain stable under all scenarios, thus providing potential climatic refugia, if protected from human encroachment.

Main Conclusions

The current deficits we identified for Galliformes protection in China resonate with a broader need for hierarchical conservation strategic planning across regions and ecosystems to ensure long-term biodiversity protection, accommodating for climate change.  相似文献   

13.

Aim

Concurrently, assessing the effectiveness of marine protected areas and evaluating the degree of risk from humans to key species provide valuable information that can be integrated into conservation management planning. Tiger sharks (Galeocerdo cuvier) are a wide‐ranging ecologically important species subject to various threats. The aim of this study was to identify “hotspots” of tiger shark habitat use in relation to protected areas and potential risks from fishing.

Location

Southwest Indian Ocean, east coast of South Africa and Mozambique.

Methods

Satellite tags were fitted to 26 tiger sharks. A subset of 19 sharks with an average period at liberty of 197 (SD = 110) days were analysed using hotspot analysis to identify areas of core habitat use. The spatial and temporal overlap of significant hotspots with current and planned marine protected areas as well as risks from fishing and culling was then calculated.

Results

There was a 5.97% spatial overlap between tiger shark hotspots and marine protected areas, which would increase significantly (p < .05) to 24.36% with the expansion of planned protected areas in South Africa and could be as high as 41.43% if Mozambique similarly expanded neighbouring protected area boundaries. Tiger sharks remained largely coastal, but only showed a spatial overlap of 5.12% with shark culling nets in South Africa. Only three sharks undertook open ocean migrations during which they were more likely to interact with longline fisheries in the region.

Main conclusions

This study demonstrates how spatial information can be used to assess the overlap between marine protected areas and the core habitats of top marine predators and highlights how congruent transnational conservation management can improve the effectiveness of protected areas. Core habitat use of marine apex predators may also be indicative of productive habitats, and therefore, predators such as tiger sharks could act as surrogate species for identifying key habitats to prioritize for conservation planning.
  相似文献   

14.

Aim

Freshwater megafauna remain underrepresented in research and conservation, despite a disproportionately high risk of extinction due to multiple human threats. Therefore, our aims are threefold; (i) identify global patterns of freshwater megafauna richness and endemism, (ii) assess the conservation status of freshwater megafauna and (iii) demonstrate spatial and temporal patterns of human pressure throughout their distribution ranges.

Location

Global.

Methods

We identified 207 extant freshwater megafauna species, based on a 30 kg weight threshold, and mapped their distributions using HydroBASINS subcatchments (level 8). Information on conservation status and population trends for each species was extracted from the IUCN Red List website. We investigated human impacts on freshwater megafauna in space and time by examining spatial congruence between their distributions and human pressures, described by the Incident Biodiversity Threat Index and Temporal Human Pressure Index.

Results

Freshwater megafauna occur in 76% of the world’s main river basins (level 3 HydroBASINS), with species richness peaking in the Amazon, Congo, Orinoco, Mekong and Ganges‐Brahmaputra basins. Freshwater megafauna are more threatened than their smaller counterparts within the specific taxonomic groups (i.e., fishes, mammals, reptiles and amphibians). Out of the 93 freshwater megafauna species with known population trends, 71% are in decline. Meanwhile, IUCN Red List assessments reported insufficient or outdated data for 43% of all freshwater megafauna species. Since the early 1990s, human pressure has increased throughout 63% of their distribution ranges, with particularly intense impacts occurring in the Mekong and Ganges‐Brahmaputra basins.

Main conclusions

Freshwater megafauna species are threatened globally, with intense and increasing human pressures occurring in many of their biodiversity hotspots. We call for research and conservation actions for freshwater megafauna, as they are highly sensitive to present and future pressures including a massive boom in hydropower dam construction in their biodiversity hotspots.
  相似文献   

15.
Protected areas (PAs) are the main instrument for biodiversity conservation, which has triggered the development of numerous indicators and assessments on their coverage, performance and efficiency. The connectivity of the PA networks at a global scale has however been much less explored; previous studies have either focused on particular regions of the world or have only considered some types of PAs.Here we present, and globally assess, ProtConn, an indicator of PA connectivity that (i) quantifies the percentage of a study region covered by protected connected lands, (ii) can be partitioned in several components depicting different categories of land (unprotected, protected or transboundary) through which movement between protected locations may occur, (iii) is easy to communicate, to compare with PA coverage and to use in the assessment of global targets for PA systems.We apply ProtConn to evaluate the connectivity of the PA networks in all terrestrial ecoregions of the world as of June 2016, considering a range of median dispersal distances (1–100 km) encompassing the dispersal abilities of the large majority of terrestrial vertebrates.We found that 9.3% of the world is covered by protected connected lands (average for all the world’s ecoregions) for a reference dispersal distance of 10 km, increasing up to 11.7% for the largest dispersal distance considered of 100 km. These percentages are considerably smaller than the global PA coverage of 14.7%, indicating that the spatial arrangement of PAs is only partially successful in ensuring connectivity of protected lands. The connectivity of PAs largely differed across ecoregions. Only about a third of the world’s ecoregions currently meet the Aichi Target of having 17% of the terrestrial realm covered by well-connected systems of PAs. Finally, our findings suggest that PAs with less strict management objectives (allowing the sustainable use of resources) may play a fundamental role in upholding the connectivity of the PA systems.Our analyses and indicator make it possible to identify where on the globe additional efforts are most needed in expanding or reinforcing the connectivity of PA systems, and can be also used to assess whether newly designated sites provide effective connectivity gains in the PA system by acting as corridors or stepping stones between other PAs. The results of the ProtConn indicator are available, together with a suite of other global PA indicators, in the Digital Observatory for Protected Areas of the Joint Research Centre of the European Commission.  相似文献   

16.
Although mammalian carnivores are vulnerable to habitat fragmentation and require landscape connectivity, their global patterns of fragmentation and connectivity have not been examined. We use recently developed high-resolution habitat suitability models to conduct comparative analyses and to identify global hotspots of fragmentation and connectivity for the world's terrestrial carnivores. Species with less fragmentation (i.e. more interior high-quality habitat) had larger geographical ranges, a greater proportion of habitat within their range, greater habitat connectivity and a lower risk of extinction. Species with higher connectivity (i.e. less habitat isolation) also had a greater proportion of high-quality habitat, but had smaller, not larger, ranges, probably reflecting shorter distances between habitat patches for species with restricted distributions; such species were also more threatened, as would be expected given the negative relationship between range size and extinction risk. Fragmentation and connectivity did not differ among Carnivora families, and body mass was associated with connectivity but not fragmentation. On average, only 54.3 per cent of a species' geographical range comprised high-quality habitat, and more troubling, only 5.2 per cent of the range comprised such habitat within protected areas. Identification of global hotspots of fragmentation and connectivity will help guide strategic priorities for carnivore conservation.  相似文献   

17.
Background: For prioritising practical conservation measures in areas of high endemic plant diversity, a fine-scale hierarchy of sites needs to be established. In this context, conservation sites designed at local and regional levels are considered a network of interconnected areas.

Aims: The main aim was to identify two hierarchical levels of a network of conservation sites, called ‘micro hotspots’ and ‘nano hotspots’, and test their efficiency for achieving conservation objectives across the island of Sardinia, Mediterranean Basin.

Methods: We analysed the spatial distribution of endemic vascular plant species (EVPS) richness. Additionally, the area, perimeter, connectivity and surplus costs for the protection of all endemic plant populations were used as ranking criteria for a hierarchical classification.

Results: We identified eight micro hotspots and 82 nano hotspots. Amongst the three possible solutions compared, the integrated network of micro and nano hotspots resulted in more effective conservation than any of the single-level network solutions with only micro or nano hotspots, and it included 89% of all EVPS in a relatively small areal extent.

Conclusions: The identification of hotspot networks at the regional level allowed determining priority areas to implement conservation efforts for EVPS. The integration of micro hotspots with nano hotspots resulted in the most effective network from both conservation and economic perspectives. We suggest that our model may provide an effective tool for integrated and effective conservation actions in the Mediterranean Basin.  相似文献   

18.
Freshwater ecosystems are the most threatened ecosystems worldwide. Argentinian‐protected areas have been established mainly to protect vertebrates and plants in terrestrial ecosystems. In order to create a comprehensive biodiverse conservation plan, it is crucial to integrate both aquatic and terrestrial systems and to include macroinvertebrates. Here, we address this topic by proposing priority areas of conservation including invertebrates, aquatic ecosystems, and their connectivity and land uses. Location: Northwest of Argentina. We modeled the ecological niches of different taxa of macroinvertebrates such as Coleoptera, Ephemeroptera, Hemiptera, Megaloptera, Lepidoptera, Odonata, Plecoptera, Trichoptera, Acari, and Mollusca. Based on these models, we analyzed the contribution of currently established protected areas in the conservation of the aquatic biodiversity and we propose a spatial prioritization taking into account possible conflict regarding different land uses. Our analysis units were the real watersheds, to which were added longitudinal connectivity up and down the rivers. A total of 132 species were modeled in the priority area analyses. The analysis 1 showed that only an insignificant percentage of the macroinvertebrates distribution is within the protected areas in the North West of Argentina. The analyses 2 and 3 recovered similar values of protection for the macroinvertebrate species. The upper part of Bermejo, Salí‐Dulce, San Francisco, and the Upper part of Juramento basins were identified as priority areas of conservation. The aquatic ecosystems need special protection and 10% or even as much as 17% of land conservation is insufficient for species of macroinvertebrates. In turn the protected areas need to combine the aquatic and terrestrial systems and need to include macroinvertebrates as a key group to sustain the biodiversity. In many cases, the land uses are in conflict with the conservation of biodiversity; however, it is possible to apply the connectivity of the watersheds and create multiple‐use modules.  相似文献   

19.

Questions

What are the most important drivers of plant species richness (gamma‐diversity) and species turnover (beta‐diversity) in the field layer of a forest edge? Does the tree and shrub species richness structure and complexity affect the richness of forest and grassland specialist species?

Location

Southeast Sweden.

Methods

We sampled 50 forest edges with different levels of structural complexity in agricultural landscapes. In each border we recorded trees, shrubs and herb layer species in a 50‐m transect parallel with the forest. We investigated species composition and species turnover in relation to the proportions of gaps in the border and the diversity of trees and shrubs.

Results

Total plant species richness in the field layer was mainly explained by the proportion of gaps to areas with full canopy cover and tree diversity. Increasing number of gaps promoted higher diversity of grassland specialist species within the field layer, resulting in open forest borders with the highest overall species richness. Gaps did however have a negative impact on forest species richness. Conversely, increasing forest species richness was positively related to tree diversity, but the number of grassland specialist species was negatively affected by tree diversity.

Conclusions

Managing forest borders, and therefore increasing the area of semi‐open habitats in fragmented agricultural landscapes, provides future opportunities to create a network of suitable habitats for both grassland and deciduous forest specialist species. Such measures therefore have the potential to increase functional connectivity and support dispersal of species in homogeneous forest/agricultural landscapes.  相似文献   

20.

Aim

Habitat fragmentation and alien species are among the leading causes of biodiversity loss. In an attempt to reduce the impact of forestry on natural systems, networks of natural corridors and patches of natural habitat are often maintained within the afforested matrix, yet these can be subject to degradation by invasion of non‐native species. Both habitat fragmentation and alien invasive species disrupt the complex interaction networks typical of native communities. This study examines whether an invasive plant and/or the fragmented nature of the forestry landscape influences natural flower visitation networks (FVNs), flower–visitor abundance and richness or flower/visitor species composition.

Location

The species rich and diverse grasslands in the KwaZulu‐Natal Midlands, South Africa is under threat from transformation, particularly by commercial forestry plantations, restricting much of the remaining untransformed grasslands into remnant grassland patches (RGPs). Remaining patches are under additional threat from the invasive Rubus cuneifolius Pursh (bramble). Sites were established in RGPs and in a nearby protected area (PA), with and without brambles present for both areas.

Results

Flower abundance and flower area of native plant species were greater within RGP than in PA, but only in the absence of R. cuneifolius. Flower–visitor assemblages differed between invaded and uninvaded sites and also differed between PA and RGP sites. Both areas lost specialist flower–visitor species in the presence of brambles. Network modularity was greatly reduced by the presence of bramble, indicating a reduction in complexity and organization. The structure of FVNs was otherwise unaffected by presence of bramble or being located in RGPs or the PA.

Main conclusions

The RPGs contribute to regional biodiversity conservation through additional compositional diversity and intact FVNs. Rubus cuneifolius reduces ecological complexity of both RGPs and PAs, however, and its removal must be prioritized to conserve FVNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号