首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species.The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca2+ signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 – amino- 6,7 – dihydroxy – 1,2,3,4 – tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.  相似文献   

3.
Calcium acts as a second messenger in many cell types, including insect hemocytes. Intracellular calcium level has a definite role in innate and adaptive immune signaling. Biogenic amines such as octopamine (OA), tyramine (TA), dopamine (DA) and serotonin (5-HT) play various important physiological roles in insects by activating distinct G-protein-coupled receptors (GPCRs) that share a putative seven transmembrane domain structure. OA and 5-HT have been shown that can mediate insect hemocytic immune reactions to infections and invasions. Here, we showed that TA increase hemocyte spreading in the rice stem borer, Chilo suppressalis. Furthermore, we cloned a cDNA encoding a tyramine receptor type 2 from the hemocytes in the C. suppressalis, viz., CsTA2, which shares high sequence similarity to members of the invertebrate tyramine receptor family. The CsTA2 receptor was stably expressed in human embryonic kidney (HEK) 293 cells, and its ligand response has been examined. Receptor activation with TA induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in cells, with an EC50 value of 18.7 ± 5.3 nM, whereas OA, DA, 5-HT and other potential agonists did not have this response. The mRNA is present in various tissues including nerve cord, hemocytes, fat body, midgut, Malpighian tubules, and epidermis in the larval stage. Western blot analysis and immunohistochemistry assay displayed that CsTA2 was detected and presented on hemocytes. We also showed that TA induced Ca2+ release from the hemocytes of C. suppressalis.  相似文献   

4.
Dopamine (DA) is a physiologically important biogenic amine in insect peripheral and nervous tissues. We recently cloned two DA receptors (BmDopR1 and BmDopR2) from the silkworm Bombyx mori and identified them as D1-like receptors, which activate adenylate cyclase to increase intracellular cAMP levels. In this study, these two receptors were stably expressed in HEK-293 cells, and the dose-responsiveness to DA and their pharmacological properties were examined using cAMP assays. BmDopR1 showed a dose-dependent increase in cAMP levels at DA concentrations up to 10?7 M with EC50 of 3.30 nM, while BmDopR2 required 10?6 M DA for activation. In BmDopR1-expressing cells, DA at 10?6–10?4 M induced 30–50% lower cAMP production than 10?7 M DA. BmDopR2-expressing cells showed a standard sigmoidal dose–response, with maximum cAMP levels attained with 10?5–10?4 M DA and EC50 of 1.30 μM. Both receptors had similar agonist profiles, and the typical vertebrate D1-like receptor agonist SKF-38393 was ineffective. Experiments with antagonists revealed that BmDopR1 exhibits D1-like features. However, the pharmacology of BmDopR2 was distinct from D1-like receptors; the typical vertebrate D1-like receptor antagonist SCH-23390 was less potent than the nonselective antagonist flupenthixol and the D2-like receptor antagonist chlorpromazine. The rank order of activities of several antagonists for BmDopR1 and BmDopR2 was more similar to that of Drosophila melanogaster DA receptors than Apis mellifera DA receptors. These data suggest that DA receptors could be potential targets for specific insecticides or insectistatics.  相似文献   

5.
6.
Summary Physiological, pharmacological, histochemical and biochemical studies indicate that dopamine receptors are heterogenous in the, central nervous system with each individual functions. This review describes pharmacological and biochemical characteristics of dopamine receptors, particularly in canine caudate nucleus, which have been studied in our laboratory with a brief comparison to the current studies by other workers in similar research fields.Two distinct dopamine receptors have been characterized by means of [3H]dopamine binding to the synaptic membranes from canine caudate nucleus. One of the receptors with a Kd of about 3 M for dopamine may be associated with adenylate cyclase and referred to as D, receptor. The other receptor with a Kd of about 10 nM for dopamine is independent of adenylate cyclase and referred to as D2. A photochemical irreversible association of [3H]dopamine with the membraneous receptors makes it possible to separate D1 and D2 receptors from one another by gel filtration on a Sephadex G-200 column after solubilization with Lubrol PX. On the basis of selective inhibition of [3H]dopamine binding to D1 and D2 receptors, dopamine antagonists can be classified into three classes: D1-selective (YM-09151-2), D2-selective (sulpiride) and nonselective (haloperidol, chlorpromazine). Effects of these typical antagonists on the metabolism of rat brain dopamine suggest that D1 receptor is more closely associated with the neuroleptic-induced increase in dopamine turnover. Studies with 28 benzamide derivatives and some classical neuroleptics reveal that apomorphine-induced stereotypy displays a greater association with D1 than with D2 receptors.Dopamine-sensitive adenylate cyclase in canine caudate nucleus can be solubilized with Lubrol PX in a sensitive form to either dopamine, Gpp(NH)p or fluoride. Sephadex G-200 gel filtration separates adenylate cyclase from D1 receptors with a concomitant loss of dopamine sensitivity. Addition of the D1 receptor fraction to the adenylate cyclase restores the responsiveness to dopamine. The solubilized dopamine-unresponsive adenylate cyclase can be further separated into two distinct fractions by a batch-wise treatment with GTP-sepharose: a catalytic unit which does not respond to fluoride, and a guanine nucleotide regulatory protein. The regulatory protein confers distinct responsiveness to Gpp(NH)p and fluoride upon adenylate cyclase. These results indicate that dopamine-sensitive adenylate cyclase is composed of at least three distinct units; D1 receptor, guanine nucleotide regulatory protein and adenylate cyclase.  相似文献   

7.
Recent studies have demonstrated that atypical antipsychotic agents, which are known to antagonize dopamine D2 and serotonin 5-HT2a receptors, have immunomodulatory properties. Given the potential of these drugs to modulate the immune system both peripherally and within the central nervous system, we investigated the ability of the atypical anti-psychotic agent, risperidone, to modify disease in the animal model of multiple sclerosis (MS)4, experimental autoimune encephalomyelitis (EAE). We found that chronic oral administration of risperidone dose-dependently reduced the severity of disease and decreased both the size and number of spinal cord lesions. Furthermore, risperidone treatment substantially reduced antigen-specific interleukin (IL)-17a, IL-2, and IL-4 but not interferon (IFN)-γ production by splenocytes at peak disease and using an in vitro model, we show that treatment of macrophages with risperidone alters their ability to bias naïve T cells. Another atypical antipsychotic agent, clozapine, showed a similar ability to modify macrophages in vitro and to reduce disease in the EAE model but this effect was not due to antagonism of the type 1 or type 2 dopamine receptors alone. Finally, we found that while risperidone treatment had little effect on the in vivo activation of splenic macrophages during EAE, it significantly reduced the activation of microglia and macrophages in the central nervous system. Together these studies indicate that atypical antipsychotic agents like risperidone are effective immunomodulatory agents with the potential to treat immune-mediated diseases such as MS.  相似文献   

8.
A cDNA encoding a seven-transmembrane receptor was cloned from the nervous tissues of silkworm (Bombyx mori) larvae. Sequence analysis indicated that the gene is an ortholog of CG6989, which encodes a Drosophila β-adrenergic-like octopamine (OA) receptor (DmOctβ2R). As very little information is available regarding this class of receptors, we generated a cell line that stably expressed the gene in HEK-293 cells and we then performed functional and pharmacological studies of this receptor. [3H]OA-binding assays using membrane preparations of this cell line showed that the receptor possesses a higher affinity for OA than for tyramine (TA) or dopamine (DA). The cell line elicited a bell-shaped, OA concentration-dependent increase in intracellular cAMP levels, with a maximum at 100 nM. (R)-OA was more potent than (S)-OA. TA and DA had weak or marginal effects on cAMP production. The OA receptor agonist demethylchlordimeform elicited a similar biphasic response, although the maximum response was attained at a concentration as low as 1 nM. The rank order of potency of other agonists was as follows: naphazoline > tolazoline, clonidine. Among the antagonists tested, only chlorpromazine significantly attenuated the OA-induced increase in cAMP levels. No increase in intracellular Ca2+ levels was observed with OA at concentrations up to 100 μM. These findings indicate that the cloned receptor is a β-adrenergic-like OA receptor with unique functional and pharmacological properties.  相似文献   

9.
Advancements in tick neurobiology may impact the development of acaricides to control those species that transmit human and animal diseases. Here, we report the first cloning and pharmacological characterization of two neurotransmitter binding G protein-coupled receptors in the Lyme disease (blacklegged) tick, Ixodes scapularis. The genes IscaGPRdop1 and IscaGPRdop2 were identified in the I. scapularis genome assembly and predicted as orthologs of previously characterized D1-like dopamine receptors in the fruit fly Drosophila melanogaster and honeybee Apis mellifera. Heterologous expression in HEK 293 cells demonstrated that each receptor functioned as a D1-like dopamine receptor because significant increases in levels of intracellular cyclic adenosine monophosphate (cAMP) were detected following dopamine treatment. Importantly, the receptors were distinct in their pharmacological properties regarding concentration-dependent response to dopamine, constitutive activity, and response to other biogenic amines. Exposure to a variety of dopamine receptor agonists and antagonists further demonstrated a D1-like pharmacology of these dopamine receptors and highlighted their differential activities in vitro.  相似文献   

10.
Caenorhabditis elegans is a useful model to study the neuronal or molecular basis for behavioral choice, a specific form of decision-making. Although it has been implied that both D1-like and D2-like dopamine receptors may contribute to the control of decision-making in mammals, the genetic interactions between D1-like and D2-like dopamine receptors in regulating decision-making are still largely unclear. In the present study, we investigated the molecular control of behavioral choice between conflicting alternatives (diacetyl and Cu2+) by D1-like and D2-like dopamine receptors and their possible genetic interactions with C. elegans as the assay system. In the behavioral choice assay system, mutation of dop-1 gene encoding D1-like dopamine receptor resulted in the enhanced tendency to cross the Cu2+ barrier compared with wild-type. In contrast, mutations of dop-2 or dop-3 gene encoding D2-like dopamine receptor caused the weak tendency to cross the Cu2+ barrier compared with wild-type. During the control of behavioral choice, DOP-3 antagonistically regulated the function of DOP-1. The behavioral choice phenotype of dop-2; dop-1dop-3 triple mutant further confirmed the possible antagonistic function of D2-like dopamine receptor on D1-like dopamine receptor in regulating behavioral choice. The genetic assays further demonstrate that DOP-3 might act through Gαo signaling pathway encoded by GOA-1 and EGL-10, and DOP-1 might act through Gαq signaling pathway encoded by EGL-30 and EAT-16 to regulate the behavioral choice. DOP-1 might function in cholinergic neurons to regulate the behavioral choice, whereas DOP-3 might function in GABAergic neurons, RIC, and SIA neurons to regulate the behavioral choice. In this study, we provide the genetic evidence to indicate the antagonistic relationship between D1-like dopamine receptor and D2-like dopamine receptor in regulating the decision-making of animals. Our data will be useful for understanding the complex functions of dopamine receptors in regulating decision-making in animals.  相似文献   

11.
Ticks transmit a wide variety of disease causing pathogens to humans and animals. Considering the global health impact of tick-borne diseases, there is a pressing need to develop new methods for vector control. We are exploring arthropod dopamine receptors as novel targets for insecticide/acaricide development because of their integral roles in neurobiology. Herein, we developed a screening assay for dopamine receptor antagonists to further characterize the pharmacological properties of the two D1-like dopamine receptors (Isdop1 and Isdop2) identified in the Lyme disease vector, Ixodes scapularis, and develop a screening assay for receptor antagonists. A cell-based, cyclic AMP luciferase reporter assay platform was implemented to screen the LOPAC1280 small molecule library for Isdop2 receptor antagonists, representing the first reported chemical library screen for any tick G protein-coupled receptor. Screening resulted in the identification of 85 “hit” compounds with antagonist activity at the Isdop2 receptor. Eight of these chemistries were selected for confirmation assays using a direct measurement of cAMP, and the effects on both Isdop1 and Isdop2 were studied for comparison. Each of these eight compounds showed antagonistic activity at both Isdop1 and Isdop2, although differences were observed regarding their relative potencies. Furthermore, comparison of the pharmacological properties of the tick dopamine receptors with that of the AaDOP2 receptor from the yellow fever mosquito and the human dopamine D1 receptor (hD1) revealed species-specific pharmacological profiles of these receptors. Compounds influencing dopaminergic functioning, such as the dopamine receptor antagonists discovered here, may provide lead chemistries for discovery of novel acaricides useful for vector control.  相似文献   

12.
Quipazine (2-(1-piperazinyl)quinoline maleate), an agent with anti-tremorine and serotonin-like activity, was found to inhibit the uptake of 3H-dopamine and 3H-serotonin into rat striatal tissue in vitro. Quipazine was shown to be three times more effective as an inhibitor of serotonin uptake than dopamine uptake, the IC50's being 2.98 × 10?5M and 1.00 × 10?4M, respectively. These data suggest that quipazine exerts serotonergic and dopaminergic effects in the central nervous system.  相似文献   

13.
Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89  and 4.89 mm2 of transgenic leaf area whereas the consumption of non-transgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.  相似文献   

14.
IT is usually supposed that amphetamine produces behavioural effects which include an increase of spontaneous motor activity and the elicitation of stereotyped behaviours1, by causing a release of endogenous catecholamines in the central nervous system2. This view is, for example, supported by the observation that amphetamine can release the catecholamines noradrenaline (NA) and dopamine (DA) from the central nervous system in vitro2 and in vivo3, 4 and that inhibition of catecholamine biosynthesis blocks the amphetamine effect5. Anatomical studies of the distribution of neurones containing catecholamine however, raise, questions about the general applicability of this hypothesis6.  相似文献   

15.
16.
17.
Despite extensive investigations of Cbl‐interacting protein of 85 kDa (CIN85) in receptor trafficking and cytoskeletal dynamics, little is known about its functions in vivo. Here, we report the study of a mouse deficient of the two CIN85 isoforms expressed in the central nervous system, exposing a function of CIN85 in dopamine receptor endocytosis. Mice lacking CIN85 exon 2 (CIN85Δex2) show hyperactivity phenotypes, characterized by increased physical activity and exploratory behaviour. Interestingly, CIN85Δex2 animals display abnormally high levels of dopamine and D2 dopamine receptors (D2DRs) in the striatum, an important centre for the coordination of animal behaviour. Importantly, CIN85 localizes to the post‐synaptic compartment of striatal neurons in which it co‐clusters with D2DRs. Moreover, it interacts with endocytic regulators such as dynamin and endophilins in the striatum. Absence of striatal CIN85 causes insufficient complex formation of endophilins with D2DRs in the striatum and ultimately decreased D2DR endocytosis in striatal neurons in response to dopamine stimulation. These findings indicate an important function of CIN85 in the regulation of dopamine receptor functions and provide a molecular explanation for the hyperactive behaviour of CIN85Δex2 mice.  相似文献   

18.
19.
Tyramine (TA) is a biogenic amine in invertebrates. cDNA encoding the TA receptor (TAR) BmTAR2 was cloned from the nerve tissue of the silkworm Bombyx mori. The receptor's functional and pharmacological properties were examined in BmTAR2-transfected HEK-293 cells. In [3H]TA binding assays, BmTAR2 showed considerably higher affinity for TA than for other biogenic amines, with an IC50 value of 57.5 nM. Moreover, TA induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in cells, with an EC50 value of 11.6 nM, whereas octopamine and dopamine increased [Ca2+]i only at concentrations above 100 μM. A few antagonists were found to inhibit the TA-induced increases in [Ca2+]i; the rank order of potency was yohimbine > chlorpromazine > mianserin. TA showed no effect on intracellular cAMP concentration. The data indicate that BmTAR2 belongs to the second class of TARs, which are selectively coupled to intracellular Ca2+ mobilization. RT-PCR analysis revealed that BmTAR2 was expressed predominantly in the nervous tissue of B. mori larvae, suggesting that TA has neurotransmitter and neuromodulatory roles that are mediated by BmTAR2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号