首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-species communication, where signals are sent by one species and perceived by others, is one of the most intriguing types of communication that functionally links different species to form complex ecological networks. Global change and human activity can affect communication by increasing fluctuations in species composition and phenology, altering signal profiles and intensity, and introducing noise. So far, most studies on cross-species communication have focused on a few specific species isolated from ecological communities. Scaling up investigations of cross-species communication to the community level is currently hampered by a lack of conceptual and practical methodologies. Here, we propose an interdisciplinary framework based on information theory to investigate mechanisms shaping cross-species communication at the community level. We use plants and insects, the cornerstones of most ecosystems, as a showcase and focus on chemical communication as the key communication channel. We first introduce some basic concepts of information theory, then we illustrate information patterns in plant–insect chemical communication, followed by a further exploration of how to integrate information theory into ecological and evolutionary processes to form testable mechanistic hypotheses. We conclude by highlighting the importance of community-level information as a means to better understand the maintenance and workings of ecological systems, especially during rapid global change.  相似文献   

2.
3.
Plant–microbial feedbacks are important drivers of plant community structure and dynamics. These feedbacks are driven by the variable modification of soil microbial communities by different plant species. However, other factors besides plant species can influence soil communities and potentially interact with plant–microbial feedbacks. We tested for plant–microbial feedbacks in two Eucalyptus species, E. globulus and E. obliqua, and the influence of forest fire on these feedbacks. We collected soils from beneath mature trees of both species within native forest stands on the Forestier Peninsula, Tasmania, Australia, that had or had not been burnt by a recent forest fire. These soils were subsequently used to inoculate seedlings of both species in a glasshouse experiment. We hypothesized that (i) eucalypt seedlings would respond differently to inoculation with conspecific versus heterospecific soils (i.e., exhibit plant–microbial feedbacks) and (ii) these feedbacks would be removed by forest fire. For each species, linear mixed effects models tested for differences in seedling survival and biomass in response to inoculation with conspecific versus heterospecific soils that had been collected from either unburnt or burnt stands. Eucalyptus globulus displayed a response consistent with a positive plant–microbial feedback, where seedlings performed better when inoculated with conspecific versus heterospecific soils. However, this effect was only present when seedlings were inoculated with unburnt soils, suggesting that fire removed the positive effect of E. globulus inoculum. These findings show that external environmental factors can interact with plant–microbial feedbacks, with possible implications for plant community structure and dynamics.  相似文献   

4.
Short-sequence fragments (‘DNA barcodes’) used widely for plant identification and inventorying remain to be applied to complex biological problems. Host–herbivore interactions are fundamental to coevolutionary relationships of a large proportion of species on the Earth, but their study is frequently hampered by limited or unreliable host records. Here we demonstrate that DNA barcodes can greatly improve this situation as they (i) provide a secure identification of host plant species and (ii) establish the authenticity of the trophic association. Host plants of leaf beetles (subfamily Chrysomelinae) from Australia were identified using the chloroplast trnL(UAA) intron as barcode amplified from beetle DNA extracts. Sequence similarity and phylogenetic analyses provided precise identifications of each host species at tribal, generic and specific levels, depending on the available database coverage in various plant lineages. The 76 species of Chrysomelinae included—more than 10 per cent of the known Australian fauna—feed on 13 plant families, with preference for Australian radiations of Myrtaceae (eucalypts) and Fabaceae (acacias). Phylogenetic analysis of beetles shows general conservation of host association but with rare host shifts between distant plant lineages, including a few cases where barcodes supported two phylogenetically distant host plants. The study demonstrates that plant barcoding is already feasible with the current publicly available data. By sequencing plant barcodes directly from DNA extractions made from herbivorous beetles, strong physical evidence for the host association is provided. Thus, molecular identification using short DNA fragments brings together the detection of species and the analysis of their interactions.  相似文献   

5.
Trophic interactions between bacteria, viruses, and protozoan predators play crucial roles in structuring aquatic microbial communities and regulating microbe-mediated ecosystem functions (biogeochemical processes). In this microbial food web, protozoan predators and viruses share bacteria as a common resource, and protozoan predators can kill viruses [intraguild predation (IGP)] and vice versa, even though these latter processes are probably of less importance. However, protozoan predators (IG predator) and viruses (IG prey) generally occur together in various environments, and this cannot be fully explained by the classic IGP models. In addition, controlled experiments have often demonstrated that protozoan predators have apparently positive effects on viral activity. These surprising patterns can be explained by indirect interactions between them via induced trait changes in bacterial assemblages, which can be compared with trait-mediated indirect interactions (TMIIs) in terrestrial plant–insect systems. Here, we review some trait changes in bacterial assemblages that may positively affect the activities and abundance of viruses. It has been suggested that in bacterial assemblages, protozoan predation may enhance growth conditions for individual bacteria and induce both phenotypic trait changes at the individual (e.g., filament-forming bacteria) and group level as a result of changes in bacterial community composition (e.g., species dominance). We discuss the specificities of aquatic microbial systems and attempt find functional similarities between aquatic microbial systems and terrestrial plant–insect systems with regard to TMII function.  相似文献   

6.
7.
8.
9.
10.
<正>Plants have to overcome different types of environment stress including various insect and pathogen attacks during their life cycle. With long-term evolution, plants have developed sophisticated systems to recognize different biotic attacks and initiate an integrated defense network for survival. On the other hand, pathogens and insects have devised multiple strategies to adapt to their host plants. In the past  相似文献   

11.
12.
Insect attack can have major consequences for plant population dynamics. We used individually based simulation models to ask how insect oviposition behaviour influences persistence and potential stability of an herbivore–plant system. We emphasised effects on system dynamics of herbivore travel costs and of two kinds of behaviour that might evolve to mitigate travel costs: insect clutch size behaviour (whether eggs are laid singly or in groups) and female aggregation behaviour (whether females prefer or avoid plants already bearing eggs). Travel costs that increase as plant populations drop lead to inverse density dependence of plant reproduction under herbivore attack. Female clutch size and aggregation behaviours also strongly affect system dynamics. When females lay eggs in large clutches or aggregate their clutches, herbivore damage varies strongly among plants, providing probabilistic refuges that permit plant reproduction and persistence. However, the population dynamics depend strongly on whether insect behaviour is fixed or responds adaptively to plant population size: when (and only when) females increase clutch size or aggregation as plants become rare, refuges from herbivory weaken at high plant density, creating inverse density dependence in plant reproduction. Both herbivore travel costs themselves, and also insect behaviour that might evolve in response to travel costs, can thus create plant density dependence—a basic requirement for regulation of plant populations by their insect herbivores.  相似文献   

13.
14.
15.
The astonishing diversity of plants and insects and their entangled interactions are cornerstones in terrestrial ecosystems. Co-occurring with species diversity is the diversity of plant secondary metabolites (PSMs). So far, their estimated number is more than 200 000 compounds, which are not directly involved in plant growth and development but play important roles in helping plants handle their environment including the mediation of plant–insect interactions. Here, we use plant volatile organic compounds (VOCs), a key olfactory communication channel that mediates plant–insect interactions, as a showcase of PSMs. In spite of the cumulative knowledge of the functional, ecological, and microevolutionary roles of VOCs, we still lack a macroevolutionary understanding of how they evolved with plant–insect interactions and contributed to species diversity throughout the long coevolutionary history of plants and insects. We first review the literature to summarize the current state-of-the-art research on this topic. We then present various relevant types of phylogenetic methods suitable to answer macroevolutionary questions on plant VOCs and suggest future directions for employing phylogenetic approaches in studying plant VOCs and plant–insect interactions. Overall, we found that current studies in this field are still very limited in their macroevolutionary perspective. Nevertheless, with the fast-growing development of metabolome analysis techniques and phylogenetic methods, it is becoming increasingly feasible to integrate the advances of these two areas. We highlight promising approaches to generate new testable hypotheses and gain a mechanistic understanding of the macroevolutionary roles of chemical communication in plant–insect interactions.  相似文献   

16.
17.
Plant Molecular Biology - Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant...  相似文献   

18.
Ephemeroptera, Plecoptera, Trichoptera and Coleoptera (EPTC) insect fauna were collected in ten streams located in the southeastern state of São Paulo (five located in areas with banana cultivation and five located in preserved areas). Specimens were collected during October and November 2005, using a Surber sampler and network D (0.25 mm mesh size) in areas of rapids and backwaters. The organisms collected were identified to genus level, except for some small or damaged specimens that remained at the family level. In total, 1812 individuals of EPTC were identified, in which 1105 organisms were from streams in areas of banana cultivation and 706 from streams in preserved areas. Heterelmis (Elmidae) was dominant in both sets of streams. In preserved streams, Hexacylloepus (Elmidae), Tupiperla and Paragrypopteryx (Gripopterygidae) and Nectopsyche (Leptoceridae) also had high participation. Leptonema (Hydropsychidae) and Xenelmis (Elmidae) were dominant in streams located in areas of banana cultivation. The analyses of indicator species point out to five taxa on preserved streams and two taxa in the banana streams. The forested streams had higher richness and diversity of EPTC than banana plantation streams. Correspondence analysis point for two groups, one gathered in the streams near the banana plantation and the other in the preserved streams. The similarity test (ANOSIM) pointed to significant differences (P < 0.05) between these groups. This agricultural activity seems to influence the EPTC community structure in low order streams in the Atlantic Forest region. The identification of groups at the EPTC genus level was important to point out the differences between the fauna of streams impacted by banana cultivation and to establish indicator species.  相似文献   

19.
20.
Appropriate sampling effort of interaction networks is necessary to extract robust indices describing the structure of species interactions. Here we show that time-invariant variation in the composition and diversity of interaction partners of plant individuals of the same species explains volatility in aggregate network statistics due to undersampling. Within a multi-species pollinator–plant interaction matrix, we replaced the interactions observed on multiple individuals of a single plant species (Sinapis arvensis, pooled interactions) with the plant–insect interactions observed on a single plant individual. In the resampling approach, we considered the interactions of 1 to 84 S. arvensis individuals in different combinations. For each resampled network, several commonly applied aggregated statistics were calculated to test how intraspecific variation affects the properties of a multi-species network. Our results showed that aggregate statistics are sensitive towards qualitative and quantitative intraspecific variation of flower–visitor interactions within a multi-species network, which may affect the ecological interpretation about the properties of a community. These findings challenge the robustness of commonly applied network indices, confirm the urge for a sufficient and representative sampling of interactions, and emphasize the significance of intraspecific variation in the context of communities and networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号