首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
Biolistic bombardment was used to successfully transform three phytopathogenic fungal species with an infectious cDNA clone of the prototypic hypovirus, CHV1-EP713, a genetic element responsible for the virulence attenuation (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica. The fungal species included two strains each of C. parasitica and Valsa ceratosperma, as well as one strain of Phomopsis G-type (teleomorph Diaporthe Nitschke); all are members of the order Diaporthales but classified into three different genera. A subset of transformants for each of the fungal species contained CHV1-EP713 dsRNA derived from chromosomally integrated viral cDNA. As has been reported for CHV1-EP713 infection of the natural host C parasitica, biolistic introduction of CHV1-EP713 into the new fungal hosts V ceratosperma and Phomopsis G-type resulted in altered colony morphology and, more importantly, reduced virulence. These results suggest a potential for hypoviruses as biological control agents in plant-infecting fungal pathogens other than the chestnut blight fungus and closely related species. In addition, the particle delivery technique offers a convenient means of transmitting hypoviruses to potential host fungi that provides new avenues for fundamental mycovirus research and may have practical applications for conferring hypovirulence directly on infected plants in the field.  相似文献   

3.
4.
5.
Virulence-attenuating hypoviruses of the species Cryphonectria hypovirus 1 (CHV1) encode a papain-like protease, p29, that shares similarities with the potyvirus-encoded suppressor of RNA silencing HC-Pro. We now report that hypovirus CHV1-EP713-encoded p29 can suppress RNA silencing in the natural host, the chestnut blight fungus Cryphonectria parasitica. Hairpin RNA-triggered silencing was suppressed in C. parasitica strains expressing p29, and transformation of a transgenic green fluorescent protein (GFP)-silenced strain with p29 resulted in an increased number of transformants with elevated GFP expression levels. The CHV1-EP713 p29 protein was also shown to suppress both virus-induced and agroinfiltration-induced RNA silencing and systemic spread of silencing in GFP-expressing transgenic Nicotiana benthamiana line 16c plants. The demonstration that a mycovirus encodes a suppressor of RNA silencing provides circumstantial evidence that RNA silencing in fungi may serve as an antiviral defense mechanism. The observation that a phylogenetically conserved protein of related plant and fungal viruses functions as a suppressor of RNA silencing in both fungi and plants indicates a level of conservation of the mechanisms underlying RNA silencing in these two groups of organisms.  相似文献   

6.
7.
The disruption of one of two dicer genes, dcl-2, of the chestnut blight fungus Cryphonectria parasitica was recently shown to increase susceptibility to mycovirus infection (G. C. Segers, X. Zhang, F. Deng, Q. Sun, and D. L. Nuss, Proc. Natl. Acad. Sci. USA 104:12902-12906, 2007). We now report the accumulation of virus-derived small RNAs (vsRNAs) in hypovirus CHV1-EP713-infected wild-type and dicer gene dcl-1 mutant C. parasitica strains but not in hypovirus-infected dcl-2 mutant and dcl-1 dcl-2 double-mutant strains. The CHV1-EP713 vsRNAs were produced from both the positive and negative viral RNA strands at a ratio of 3:2 in a nonrandom distribution along the viral genome. We also show that C. parasitica responds to hypovirus and mycoreovirus infections with a significant increase (12- to 20-fold) in dcl-2 expression while the expression of dcl-1 is increased only modestly (2-fold). The expression of dcl-2 is further increased (~35-fold) following infection with a hypovirus CHV1-EP713 mutant that lacks the p29 suppressor of RNA silencing. The combined results demonstrate the biogenesis of mycovirus-derived small RNAs in a fungal host through the action of a specific dicer gene, dcl-2. They also reveal that dcl-2 expression is significantly induced in response to mycovirus infection by a mechanism that appears to be repressed by the hypovirus-encoded p29 suppressor of RNA silencing.  相似文献   

8.
9.
Chen B  Geletka LM  Nuss DL 《Journal of virology》2000,74(16):7562-7567
Infectious cDNA clones of mild (CHV1-Euro7) and severe (CHV1-EP713) hypovirus strains responsible for virulence attenuation (hypovirulence) of the chestnut blight fungus Cryphonectria parasitica were used to construct viable chimeric viruses. Differences in virus-mediated alterations of fungal colony morphology, growth rate, and canker morphology were mapped to a region of open reading frame B extending from nucleotides 2,363 to 9, 904. By swapping domains within this region, it was possible to generate chimeric hypovirus-infected C. parasitica isolates that exhibited a spectrum of defined colony and canker morphologies. Several severe strain traits were observed to be dominant. It was also possible to uncouple the severe strain traits of small canker size and suppression of asexual sporulation. For example, fungal isolates infected with a chimera containing nucleotides 2363 through 5310 from CHV1-Euro7 in a CHV1-713 background formed small cankers that were similar in size to that caused by CHV1-EP713-infected isolates but with the capacity for producing asexual spores at levels approaching that observed for fungal isolates infected with the mild strain. These results demonstrate that hypoviruses can be engineered to fine-tune the interaction between a pathogenic fungus and its plant host. The identification of specific hypovirus domains that differentially contribute to canker morphology and sporulation levels also provides considerable utility for continuing efforts to enhance biological control potential by balancing hypovirulence and ecological fitness.  相似文献   

10.
The prototype hypovirus CHV1-EP713 causes virulence attenuation and severe suppression of asexual sporulation and pigmentation in its host, the chestnut blight fungus, Cryphonectria parasitica. We identified a factor associated with symptom induction in C. parasitica using a transformation of C. parasitica strain EP155 with a full-length cDNA clone from a mild mutant virus strain, Cys(72). This was accomplished by using mutagenesis of the transformant fungal strain TCys(72)-1 by random integration of plasmid pHygR, conferring hygromycin resistance. The mutant, namA (after nami-gata, meaning wave shaped), showed an irregular fungal morphology with reduced conidiation and pigmentation while retaining similar levels of virulence and virus accumulation relative to TCys(72)-1- or Cys(72)-infected strain EP155. However, the colony morphology of virus-cured namA (VC-namA) was indistinguishable from those of EP155 and virus-cured TCys(72)-1 [VC-TCys(72)-1]. The phenotypic difference between VC-namA and VC-TCys(72)-1 was found only when these strains infected with the wild type or certain mutant CHV1-EP713 strains but not when infected with Mycoreovirus 1. Sequence analysis of inverse-PCR-amplified genomic DNA fragments and cDNA identified the insertion site of the mutagenic plasmid in exon 8 of the nam-1 gene. NAM-1, comprising 1,257 amino acids, shows sequence similarities to counterparts from other filamentous fungi and possesses the CorA domain that is conserved in a class of Mg(2+) transporters from prokaryotes and eukaryotes. Complementation assays using the wild-type and mutant alleles and targeted disruption of nam-1 showed that nam-1 with an extension of the pHygR-derived sequence contributed to the altered phenotype in the namA mutant. The molecular mechanism underlying virus-specific fungal symptom modulation in VC-namA is discussed.  相似文献   

11.
The review summarizes the current evidence on the phytopathogenic fungus Cryphonectria parasitica, which is a classic object for studying hypovirulence. Phenotypic manifestations of hypovirulence and the molecular mechanisms of action of the mycovirus Cryphonectria hypovirus (CHV) infecting the fungus are described in detail. Genetic determinants of vegetative incompatibility in C. parasitica (a phenomenon increasing polymorphism of the fungus and preventing CHV expansion) are considered. The data on C. parasitica polymorphism are correlated with the data on the distribution of different CHV species in the European, American, and Asian populations of the fungus.  相似文献   

12.
Recent analysis of prokaryotic Nε‐lysine‐acetylated proteins highlights the posttranslational regulation of a broad spectrum of cellular proteins. However, the exact role of acetylation remains unclear due to a lack of acetylated proteome data in prokaryotes. Here, we present the Nε‐lysine‐acetylated proteome of gram‐positive thermophilic Geobacillus kaustophilus. Affinity enrichment using acetyl‐lysine‐specific antibodies followed by LC‐MS/MS analysis revealed 253 acetylated peptides representing 114 proteins. These acetylated proteins include not only common orthologs from mesophilic Bacillus counterparts, but also unique G. kaustophilus proteins, indicating that lysine acetylation is pronounced in thermophilic bacteria. These data complement current knowledge of the bacterial acetylproteome and provide an expanded platform for better understanding of the function of acetylation in cellular metabolism.  相似文献   

13.
We reconstructed the invasion history of the fungal virus Cryphonectria hypovirus 1 (CHV‐1) in Europe, which infects the chestnut blight fungus Cryphonectria parasitica. The pattern of virus evolution was inferred based on nucleotide sequence variation from isolates sampled across a wide area in Europe at different points in time. Phylogeny and time estimates suggested that CHV‐1 was introduced together with its fungal host to Europe and that it rapidly colonized the central range along the south facing slopes of the Alps and the north‐east facing slopes of the Dinaric Alps. These central populations were the source for two waves of simultaneous invasions toward the southern Balkans and Turkey, as indicated by migration rates. Our results showed that the evolutionary scenarios for CHV‐1 and C. parasitica were spatially congruent. As infection with CHV‐1 reduces the pathogenicity of C. parasitica toward the chestnut tree, CHV‐1 invasions of the newly established C. parasitica populations probably prevented the development of devastating chestnut blight epidemics in Europe. We propose that in this, and supposedly in other pathosystems, geographic, vegetation‐related, demographic, economic, and political factors may help explain the correlated invasion pattern of a parasite and its host.  相似文献   

14.
15.
Biological control of plant diseases generally requires release of living organisms into the environment. Cryphonectria hypoviruses function as biological control agents for the chestnut blight fungus, Cryphonectria parasitica, and hypovirus-infected C. parasitica strains can be used to treat infected trees. We used naturally occurring molecular marker polymorphisms to examine the persistence and dissemination of the three genomes of a hypovirus-infected C. parasitica strain, namely, the double-stranded RNA genome of Cryphonectria hypovirus 1 (CHV1) and the nuclear and mitochondrial genomes of its fungal host. The hypovirus-infected strain was experimentally introduced into a blight-infested chestnut coppice forest by treating 73 of 246 chestnut blight cankers. Two years after introduction, the hypovirus had disseminated to 36% of the untreated cankers and to 35% of the newly established cankers. Spread of the hypovirus was more frequent within treated sprout clusters than between sprout clusters. Mitochondrial DNA of the introduced fungus also was transferred into the resident C. parasitica population. Concomitant transfer of both the introduced hypovirus and mitochondrial DNA was detected in almost one-half of the treated cankers analyzed. The introduced mitochondrial DNA haplotype also was found in three resident isolates from newly established cankers. The nuclear genome of the introduced strain persisted in the treated cankers but did not spread beyond them.  相似文献   

16.
17.
We surveyed native populations of the chestnut blight fungus, Cryphonectria parasitica, in Japan and China, and C. nitschkei, a sympatric species on chestnut trees in Japan, to learn more about the diversity of hypoviruses and other double-stranded (ds) RNA viruses. In a sample of 472 isolates of C. parasitica and 45 isolates of C. nitschkei from six prefectures in Japan, we found 27 containing one or more dsRNAs. Twelve isolates of C. parasitica and two isolates of C. nitschkei were infected with Cryphonectria hypovirus 1 (CHV-1); four of these 12 C. parasitica isolates also contained other dsRNAs that did not hybridize to CHV-1. In China, only one of 85 C. parasitica isolates was CHV-1-infected; no dsRNAs were detected in the other isolates from China. No other known hypoviruses were found in this study. However, we found two previously undescribed dsRNAs in Japan approximately 9 kb in size that did not hybridize to each other or to any known dsRNAs from C. parasitica. We also found three additional groups of dsRNAs, one of which represents the genome of a new member of the virus family Chrysoviridae and was found only in C. nitschkei; the other two dsRNAs were found previously in isolates of C. parasitica from Japan or China. The most significant result of this survey is the discovery of novel dsRNAs that can be characterized in future research.  相似文献   

18.
Protein lysine acetylation is a reversible and highly regulated post‐translational modification with the well demonstrated physiological relevance in eukaryotes. Recently, its important role in the regulation of metabolic processes in bacteria was highlighted. Here, we reported the lysine acetylproteome of Pseudomonas aeruginosa using a proteomic approach. We identified 430 unique peptides corresponding to 320 acetylated proteins. In addition to the proteins involved in various metabolic pathways, several enzymes contributing to the lipopolysaccharides biosynthesis were characterized as acetylated. This data set illustrated the abundance and the diversity of acetylated lysine proteins in P. aeruginosa and opens opportunities to explore the role of the acetylation in the bacterial physiology.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号