首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data demonstrating the effects of biological invaders on microbial communities and microbial processes are scarce, especially in marine environments. Research was conducted at Padilla Bay, Washington, to examine the effect that an invasive intertidal eelgrass, Zostera japonica Aschers & Graebn, has on rates of decomposition, microbial community composition, and the possible implications for associated ecosystem processes in this estuarine environment. A series of observational and experimental studies were conducted in beds of Z. japonica, beds of its native congener, Zostera marina, and mixed eelgrass beds. These studies assessed decomposition of invasive and native eelgrass, enumerated bacterial abundance, and examined sole source carbon usage (SSCU) by microbial assemblages. Z. japonica decomposed more rapidly than its native congener throughout the study period although rates of decomposition were variable. Microbial abundance did not differ among different vegetation compositions although differences in SSCU by microbial assemblages were detected among beds of invasive, native, and mixed eelgrass. These results indicate that this abundant invasive species can accelerate rates of decomposition and alter the associative decomposer community, which may lead to higher carbon and nutrient turnover within Padilla Bay.  相似文献   

2.
3.
A survey of the spatial distribution of benthic macroalgae in a fluvial lake of the St. Lawrence River (Lake Saint‐Pierre, Quebec, Canada) revealed a shift in composition from chlorophytes to cyanobacteria along the flow path of nutrient‐rich waters originating from tributaries draining farmlands. The link between this shift and changes in water quality characteristics was investigated by sampling at 10 sites along a 15 km transect. Conductivity, current, light extinction, total phosphorus (TP; >25 μg P · L?1), and ammonium (8–21 μg N · L?1) remained fairly constant along the transect in contrast to nitrate concentrations, which fell sharply. Filamentous and colonial chlorophytes [Cladophora sp. and Hydrodictyon reticulatum (L.) Bory] dominated in the first 5 km where nitrate concentrations were >240 μg N · L?1. A mixed assemblage of chlorophytes and cyanobacteria characterized a 1 km transition zone where nitrate decreased to 40–80 μg N · L?1. In the last section of the transect, nitrate concentrations dropped below 10 μg N · L?1, and cyanobacteria (benthic filamentous mats of Lyngbya wollei Farl. ex Gomont and epiphytic colonies of Gloeotrichia) dominated the benthic community. The predominance of nitrogen‐fixing, potentially toxic cyanobacteria likely resulted from excessive nutrient loads and may affect nutrient and trophic dynamics in the river.  相似文献   

4.
Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.  相似文献   

5.
Song  Hao  Xu  Jiahui  Lavoie  Michel  Fan  Xiaoji  Liu  Guangfu  Sun  Liwei  Fu  Zhengwei  Qian  Haifeng 《Applied microbiology and biotechnology》2017,101(4):1685-1696

Physico-chemical parameters, hydrological conditions, and microbial interactions can affect the growth and persistence of cyanobacteria, but the interacting effects among these bloom-forming factors are still poorly known. This hampers our capacity to predict the occurrence of cyanobacterial bloom accurately. Here, we studied the relationship between temperature, N and P cycles, and the microbial community abundance and diversity at 0.5 m under the surface of West Lake (China) from January 21 to November 20, 2015, in order to better understand the key factors regulating temporal changes in the cyanobacterial community. Using high throughput sequencing of the 16S rRNA gene V3-V4 region, we studied the diversity and abundance of bacteria. In parallel, we measured physico-chemical parameters and followed the abundance of key genes involved in N fixation, denitrification, and nutrient uptake. Multivariate analyses suggest that P concentration and water temperature are the key factors controlling the outbreak of summer cyanobacterial bloom. RT-qPCR analyses of the bacterial community and measurements of the copy number of denitrification-related gene (nirK, nosZ, nirS) show that denitrification potential and denitrifying bacteria relative abundance (Pseudomonas and Bacillus) increased in concert with diazotrophic cyanobacterial genera (Anabaena, Nostoc, Aphanizomenon flos-aquae) and the common bloom-forming non-diazotrophic cyanobacterium genus Microcystis. The present study brings new insights on the complex interplay between physico-chemical parameters, heterotrophic bacterial community composition, nitrogen cycle, and cyanobacteria dominance in a eutrophic lake.

  相似文献   

6.
Habitat engineering role of the invasive zebra mussel Dreissena polymorpha (Pallas) was studied in the Curonian lagoon, a shallow water body in the SE Baltic. Impacts of live zebra mussel clumps and its shell deposits on benthic biodiversity were differentiated and referred to unmodified (bare) sediments. Zebra mussel bed was distinguished from other habitat types by higher benthic invertebrate biomass, abundance, and species richness. The impact of live mussels on biodiversity was more pronounced than the effect of shell deposits. The structure of macrofaunal community in the habitats with >103 g/m2 of shell deposits devoid of live mussels was similar to that found within the zebra mussel bed. There was a continuous shift in species composition and abundance along the gradient ‘bare sediments—shell deposits—zebra mussel bed’. The engineering impact of zebra mussel on the benthic community became apparent both in individual patches and landscape-level analyses.  相似文献   

7.
We have used fatty acid analyses to study the community structure of a layered endoevaporitic microbial community within a gypsum crust that covers the bottom of a saltern evaporation pond in Eilat, Israel. This community, living at a salinity of 218–238 g l−1 total dissolved salts, consists of an upper brown layer dominated by unicellular cyanobacteria, a green layer with filamentous cyanobacteria, a red-purple layer with both Chromatium and Ectothiorhodospira/Halorhodospira type of purple sulfur bacteria, and a black layer in which dissimilatory sulfate reduction occurs. An olive-green layer is sometimes present below the red-purple layer. Analysis by gas chromatography/mass spectrometry of the fatty acid methyl esters prepared from the different fractions showed characteristic patterns in each layer, and these could be related to fatty acid composition data from the literature and to fatty acid analyses of representative halophilic microorganisms isolated from the site. The nature of the fatty acids in the green layer suggests that the cyanobacteria present there use the oxygen-independent pathway for production of unsaturated fatty acids, a pathway only occasionally encountered in filamentous cyanobacteria. The facultative anaerobic nature of the cyanobacteria in the green layer was confirmed by their ability to perform anoxygenic photosynthesis with sulfide as electron donor. Specific signature fatty acids identified for each layer corresponded well with the microscopic and functional analysis of the biota present. Guest Editor: John M. Melack Saline Waters and their Biota  相似文献   

8.
Grazing effects of ayu, Plecoglossus altivelis Temminck et Schegel, on the benthic algal assemblages were investigated in the Chikuma River, Japan. Comparison of the algal composition on boulders with and without intensively grazed patches indicated that fish grazing decreased the abundance of diatoms and prostrate filamentous cyanobacteria and caused upright filamentous cyanobacteria to predominate. Differential consumption by ayu was estimated by comparing the relative abundance of algae in the stomach contents of ayu and that in the algal assemblages within the grazed patches. The results showed that ayu consumed the prostrate filamentous cyanobacteria proportionally to their abundance, whereas they ingested diatoms and the upright filamentous cyanobacteria in a larger and lower quantity, respectively, than that expected from their abundance. Differential consumption would involve the change in the algal composition toward the predominance of upright filamentous cyanobacteria under fish grazing conditions.  相似文献   

9.
We examined the relationship between the δ13C and taxonomic composition of benthic algae collected from a riffle (fast current habitat) of a non‐shaded mountain stream, which is a tributary of the Kiso River, Japan. The benthic algal δ13C ranged from ?20.6 to ?14.2‰ and tended to be 13C‐depleted with increasing relative abundance of upright filamentous cyanobacteria and 13C‐enriched with increasing relative abundance of prostrate filamentous cyanobacteria. Using isotopic mass balance equations, the relative abundance of the dominant taxa, upright and prostrate filamentous cyanobacteria, small diatoms and others, explained 74% of δ13C variability. This study shows a case where the difference in taxonomic composition is a possible source of the isotopic variability of benthic algae, which is a mixture of taxa with distinct isotopic signatures.  相似文献   

10.
张敏  马淼 《生态学报》2022,42(22):9017-9025
光果甘草连年种植所引起的甘草产量下降、植株发育不良、根腐病频发严重影响甘草产业的持续发展,造成了重大的经济损失。然而,其机制却并不清楚。应用下一代测序技术,对未种植过光果甘草的土壤(Control),生长1a (Gg1)和生长5a (Gg5)光果甘草的根际土壤行16S rDNA和18S rDNA ITS测序,并对比分析了甘草根际土壤和对照组之间,以及不同种植年限甘草根际土壤之间的微生物群落结构差异,以期探究光果甘草连作障碍的原因。结果表明,光果甘草连作增加了根际土壤细菌群落的丰富度,降低了真菌群落的丰富度(P>0.05)。主坐标分析显示,光果甘草的根际土壤微生物组成与对照组之间存在显著差异,并且光果甘草的种植年限显著地影响了根际土壤微生物的群落组成。在门水平上,光果甘草连作显著地增加了真菌Blastocladiomycota和Mortierellomycota的相对多度(P<0.05)。在属水平上,光果甘草连作显著地降低了有益细菌ArthrobacterPseudomona及有益真菌Naganishia的相对多度,而增加了病原真菌FusariumThanatephorus的相对多度。由此推测,光果甘草根际土壤微生物群落结构的改变,以及有益微生物相对多度的降低和病原微生物相对多度的增加可能是导致光果甘草发生连作障碍的重要原因之一。  相似文献   

11.
A new chroococcalean cyanobacterium is described from approximately 1‐billion‐year‐old non‐marine deposits of the Torridonian Group of Scotland and the Nonesuch Formation of Michigan, USA. Individual cells of the new microfossil, Eohalothece lacustrina gen. et sp. nov., are associated with benthic microbial biofilms, but the majority of samples are recovered in palynological preparations in the form of large, apparently planktonic colonies, similar to extant species of Microcystis. In the Torridonian, Eohalothece is associated with phosphatic nodules, and we have developed a novel hypothesis linking Eohalothece to phosphate deposition in ancient freshwater settings. Extant cyanobacteria can be prolific producers of extracellular microcystins, which are non‐ribosomal polypeptide phosphatase inhibitors. Microcystins may have promoted the retention and concentration of sedimentary organic phosphate prior to mineralization of francolite and nodule formation. This has a further implication that the Torridonian lakes were nitrogen limited as the release of microcystins is enhanced under such conditions today. The abundance and wide distribution of Eohalothece lacustrina attests to the importance of cyanobacteria as oxygen‐producing photoautotrophs in lacustrine ecosystems at the time of the Mesoproterozoic–Neoproterozoic transition.  相似文献   

12.
The development of epilithic cyanobacteria communities in a Mediterranean calcareous stream in the province of Murcia (SE Spain) was studied during the course of one year in an attempt to clarify the environmental variables that influence the production of microcystins. The predominant cyanobacteria were species of Rivularia, which formed conspicuous colonies throughout the year. Seasonally, other species were abundant: Schizothrix fasciculata, Tolypothrix distorta and Phormidium splendidum. All the species collected produced microcystins to a varying degree (up to five varieties), while the benthic community as a whole produced concentrations as high as 20.45 mg m−2. At the same time, the presence of microcystins dissolved in water was confirmed. Among environmental variables, air temperature and silicate content were positively and strongly correlated with total microcystins, while nitrite, nitrate, orthophosphate, calcium and flow were negatively correlated with them. Dissolved microcystins were negatively correlated with microcystin LR, P.A.R. and total phosphorus and positively with rainfall. The production of microcystin YR seems to be regulated by different factors from those regulating the other main varieties (microcystin LR and microcystin RR). The data obtained indicate that all the tested benthic cyanobacteria produced microcystins in this shallow calcareous stream, which may contribute to their predominance in the prevailing conditions. The accumulation of microcystins in mucilaginous colonies of other groups of algae poses new questions concerning the possible ecological function of these compounds and needs further study.  相似文献   

13.
Trait-mediated indirect effects can have important effects on food web dynamics but are still poorly understood in the field. In a previous population cage study of a small community of aphids and an aphid natural enemy it was found that a trait-mediated indirect effect involving the natural enemy’s behaviour was key to understanding community persistence. Here evidence is presented that a related phenomenon involving some of the same species occurs in the field. Surveys showed that two species of aphid (Acyrthosiphon pisum and Megourella purpurea) tended to share a host plant with a third generally unpalatable species (Megoura viciae) more often than expected by chance. Further evidence suggested this was not due to differential plant suitability or location, but to a positive effect of M. viciae on the performance of the other two species. To test this, field experiments were set up comparing the size and persistence of A. pisum colonies sharing or not sharing a plant individual with M. viciae colonies. A. pisum colonies tended to be larger and persisted for a longer period of time in the presence of M. viciae, an effect that was significant for small colonies exposed to many predators. When protected from predation the presence of M. viciae had no effect on A. pisum colonies. The positive effects of M. viciae on A. pisum is thus likely to be natural-enemy mediated rather than plant mediated. How predation by Syrphidae, the major group observed in the study, is affected by M. viciae is discussed. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
A mechanistic understanding of factors that structure spatiotemporal community composition is a major challenge in microbial ecology. Our study of microbial communities in the headwaters of three freshwater stream networks showed significant community changes at the small spatial scale of benthic habitats when compared to changes at mid- and large-spatial scales associated with stream order and catchment. Catchment (which included temperate and tropical catchments) had the strongest influence on community composition followed by habitat type (epipsammon or epilithon) and stream orders. Alpha diversity of benthic microbiomes resulted from interactions between catchment, habitat, and canopy. Epilithon contained relatively more Cyanobacteria and algae while Acidobacteria and Actinobacteria proportions were higher in epipsammic habitats. Turnover from replacement created ~60%–95% of beta diversity differences among habitats, stream orders, and catchments. Turnover within a habitat type generally decreased downstream indicating longitudinal linkages in stream networks while between habitat turnover also shaped benthic microbial community assembly. Our study suggests that factors influencing microbial community composition shift in dominance across spatial scales, with habitat dominating locally and catchment dominating globally.  相似文献   

15.
Recruitment of total phytoplankton, chlorophytes and cyanobacteria from lake sediments to the water column was studied using photosynthetic pigments at one site (1.5 m) in Lake Taihu, a large shallow lake in China. Samples were taken weekly from the migration traps installed on the bottom from March to May 2004. Abundance of total phytoplankton, chlorophytes and cyanobacteria were represented by Chlorophyll (Chl) a, b, and phycocyanin (PC), respectively. Over the three months, total phytoplankton, chlorophytes, and cyanobacteria corresponding to 48.9%, 68.9% and 316.2% of their initial concentrations in surface sediments were recruited in Lake Taihu. However, compared with their increase in pelagic abundance over the same period, the recruitment accounted for a rather small inoculum. Accompanying the recruitment, total phytoplankton and chlorophytes declined and cyanobacteria increased in the upper 0–2 cm sediments; colonies of Microcystis aeruginosa in the water column enlarged from small size with several cells to large colonies with hundreds of cells. Thus, overwintering and subsequent growth renewal of pelagic phytoplankton merits further study and comparison with benthic survival and recruitment. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Coral reef ecosystems are now commonly affected by major climate and disease disturbances. Disturbance impacts are typically recorded using reef benthic cover, but this may be less reflective of other ecosystem processes. To explore the potential for reef water-based disturbance indicators, we conducted a 7-year time series on US Virgin Island reefs where we examined benthic cover and reef water nutrients and microorganisms from 2016 to 2022, which included two major disturbances: hurricanes Irma and Maria in 2017 and the stony coral tissue loss disease outbreak starting in 2020. The disease outbreak coincided with the largest changes in the benthic habitat, with increases in the percent cover of turf algae and Ramicrusta, an invasive alga. While sampling timepoint contributed most to changes in reef water nutrient composition and microbial community beta diversity, both disturbances led to increases in ammonium concentration, a mechanism likely contributing to observed microbial community shifts. We identified 10 microbial taxa that were sensitive and predictive of increasing ammonium concentration. This included the decline of the oligotrophic and photoautotrophic Prochlorococcus and the enrichment of heterotrophic taxa. As disturbances impact reefs, the changing nutrient and microbial regimes may foster a type of microbialization, a process that hastens reef degradation.  相似文献   

17.
Coral populations have precipitously declined on Caribbean reefs while algal abundance has increased, leading to enhanced competitive damage to corals, which likely is mediated by the potent allelochemicals produced by both macroalgae and benthic cyanobacteria. Allelochemicals may affect the composition and abundance of coral-associated microorganisms that control host responses and adaptations to environmental change, including susceptibility to bacterial diseases. Here, we demonstrate that extracts of six Caribbean macroalgae and two benthic cyanobacteria have both inhibitory and stimulatory effects on bacterial taxa cultured from the surfaces of Caribbean corals, macroalgae, and corals exposed to macroalgal extracts. The growth of 54 bacterial isolates was monitored in the presence of lipophilic and hydrophilic crude extracts derived from Caribbean macroalgae and cyanobacteria using 96-well plate bioassays. All 54 bacterial cultures were identified by ribotyping. Lipophilic extracts from two species of Dictyota brown algae inhibited >50% of the reef coral bacteria assayed, and hydrophilic compounds from Dictyota menstrualis particularly inhibited Vibrio bacteria, a genus associated with several coral diseases. In contrast, both lipo- and hydrophilic extracts from 2 species of Lyngbya cyanobacteria strongly stimulated bacterial growth. The brown alga Lobophora variegata produced hydrophilic compounds with broad-spectrum antibacterial effects, which inhibited 93% of the bacterial cultures. Furthermore, bacteria cultured from different locations (corals vs. macroalgae vs. coral surfaces exposed to macroalgal extracts) responded differently to algal extracts. These results reveal that extracts from macroalgae and cyanobacteria have species-specific effects on the composition of coral-microbial assemblages, which in turn may increase coral host susceptibility to disease and result in coral mortality.  相似文献   

18.

A growing number of studies have provided insights into the diversity of coral-associated bacteria and their function in the coral holobiont. Yet, information about spatial heterogeneity of bacteria within coral colonies is limited. Using 16S rRNA gene metabarcoding, we analyzed the bacterial community composition across four distinct locations in each of five wild Acropora loripes colonies. Considerable variation within and among colonies was present, which has implications for sampling strategies and data interpretation in coral microbiome research. Bacterial assemblages significantly differed in alpha and beta diversity among colonies, with all corals possessing a high relative abundance of Endozoicomonas. When the same A. loripes colonies were subsequently reared in aquaria over 4 weeks, the relative abundance of Marinobacter initially increased in all colonies. However, no significant alteration in bacterial community composition was observed over time and the colonies maintained distinct bacterial microbiomes.

  相似文献   

19.
To test the hypothesis that a switch in diet might cause changes in the abundance and composition of mucous‐dwelling microorganisms, a short‐term experiment was conducted with Atlantic salmon Salmo salar. Fish were fed on three different diets: pelleted S. salar feed, macroinvertebrates or pellets supplemented with an antibiotic. A fourth group of fish was deprived of food throughout the trial. Seven days after manipulating diets, significant differences were found in microbial density and community composition (quantified by different morphologically distinct colonies), particularly between fed and unfed animals. Moreover, food deprivation caused a rapid decrease in the number of epidermal mucous cells of the lateral skin, which may indicate a decrease in mucous secretion and explain differences in the diversity of mucous‐dwelling microbiota observed in the fish. This is the first report of an effect of feeding regime on the abundance of microbial communities associated with cutaneous mucus of fishes.  相似文献   

20.
1. The introduction of invasive species is one of the main threats to global biodiversity, ecosystem structure and ecosystem processes. In freshwaters, invasive crayfish alter macroinvertebrate community structure and destroy macrophyte beds. There is limited knowledge on how such invasive species‐driven changes affect consumers at higher trophic levels. 2. In this study, we explore how the invasive rusty crayfish Orconectes rusticus, a benthic omnivore, affects benthic macroinvertebrates, as well as the broader consequences for ecosystem‐level trophic flows in terms of fish benthivory and trophic position (TP). We expected crayfish to decrease abundance of benthic macroinvertebrates, making most fish species less reliant on benthic resources. We expected crayfish specialists (e.g. Lepomis sp. and Micropterus sp.) to increase their benthic dependence. 3. In 10 northern Wisconsin lakes, we measured rusty crayfish relative abundance (catch per unit effort, CPUE), macroinvertebrate abundance, and C and N stable isotope ratios of 11 littoral fish species. We used stable isotope data and mixing models to characterise the trophic pathways supporting each fish species, and related trophic structure to crayfish relative abundance, fish body size and abiotic predictors using hierarchical Bayesian models. 4. Benthic invertebrate abundance was negatively correlated with rusty crayfish relative abundance. Fish benthivory increased with crayfish CPUE for all 11 fish species; posterior probabilities of a positive effect were >95%. TP also increased slightly with crayfish CPUE for some species, particularly smallmouth bass, largemouth bass, rock bass and Johnny darter. Moreover, both fish body size and lake abiotic variables explained variation in TP, while their effects on benthivory were small. 5. Rusty crayfish abundance explained relatively little of the overall variation in fish benthivory and TP. Although rusty crayfish appear to have strong effects on abundances of benthic macroinvertebrates, energy flow pathways and trophic niches of lentic fishes were not strongly influenced by invasive rusty crayfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号