首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the relationship between animal excreta and the occurrence of clubroot disease of cruciferous crops caused by Plasmodiophora brassicae, chickens were fed with resting spores of the pathogen. Their faeces were collected and used to inoculate crucifers. This study proved that both fresh and composted manures could induce clubroot and the presence of the pathogen in the manure was confirmed by PCR amplification. However, composting had detrimental effects on the virulence of the resting spores in the manure. When the temperature was over 32°C, the incidence and severity of clubroot declined with the increase in the exposure time of resting spores to high temperature and the pathogenicity was completely lost when the spores were kept at 48°C for 6 h. The control measures for the clubroot disease were discussed.  相似文献   

2.
Clubroot, caused by Plasmodiophora brassicae, is one of the most important diseases of brassicas. Management of clubroot is difficult, and the best means of avoiding the disease include planting in areas where P. brassicae is not present and using plants and growing media free from pathogen inoculum. As P. brassicae is not culturable, its detection has traditionally relied on plant bioassays, which are time-consuming and require large amounts of glasshouse space. More recently, fluorescence microscopy, serology, and DNA-based methods have all been used to test soil, water, or plant samples for clubroot. The use of fluorescence microscopy to detect and count pathogen spores in the soil requires significant operator skill and is unlikely to serve as the basis for a routine diagnostic test. By contrast, serologic assays are inexpensive and amenable to high-throughput screening but need to be based on monoclonal antibodies because polyclonal antisera cannot be reproduced and are therefore of limited quantity. Several polymerase chain reaction (PCR)-based assays have also been developed; these are highly specific for P. brassicae and have been well-correlated with disease severity. As such, PCR-based diagnostic tests have been adopted to varying extents in Canada and Australia, but wide implementation has been restricted by sample processing costs. Efforts are underway to develop inexpensive serologic on-farm diagnostic kits and to improve quantification of pathogen inoculum levels through real-time PCR. Proper detection and quantification of P. brassicae will likely play an increasingly important role in the development of effective clubroot management strategies.  相似文献   

3.
4.
Pathotypes of Plasmodiophora brassicae, the cause of clubroot, in Australia   总被引:1,自引:0,他引:1  
Variation in pathogenicity of Plasmodiophora brassicae in Australia was studied using the European Clubroot Differential series of brassica hosts. From 41 collections of P. brassicae originating from important vegetable brassica production regions in Victoria, Western Australia, Tasmania, Queensland and New South Wales, 23 triplet codes were generated. These were more similar to populations of P. brassicae reported from the USA than those from Europe. The most common Australian pathotypes had triplet codes of 16/3/12 and 16/3/31 and were each assigned seven times to pathogen collections originating from three states of Australia. Other codes that occurred more than once were 16/2/31, which was assigned to six collections from four states of Australia, and 16/19/31, which was assigned twice to collections originating from Western Australia.  相似文献   

5.
S. Ando    T. Yamada  T. Asano    S. Kamachi    S. Tsushima    T. Hagio    Y. Tabei 《Journal of Phytopathology》2006,154(3):185-189
Infection of crucifers by the obligate plant pathogen Plasmodiophora brassicae Woron. results in the formation of clubroot disease in these plants. Plasmodiophora brassicae gene expression during disease development was studied by differential display analysis of total RNA extracted from the roots of Chinese cabbage inoculated with the pathogen. In a series of experiments, 30 differentially expressed bands of cDNA were detected, and the expression of clone no. 17 was confirmed in clubbed roots. Southern blot analysis showed that this clone was a single‐copy gene in the P. brassicae genome. Putative amino acid sequence analysis of the full‐length cDNA of clone no. 17 (4.6 kb, designated PbSTKL1) revealed a serine/threonine kinase‐like domain at the C‐terminal region and a coiled‐coil structure in the middle region of the putative protein. PbSTKL1 expression increased strongly beginning 30 days after inoculation and was coincident with resting spore formation.  相似文献   

6.
The obligate biotrophic pathogen Plasmodiophora brassicae causes clubroot disease in Arabidopsis thaliana, which is characterized by large root galls. Salicylic acid (SA) production is a defence response in plants, and its methyl ester is involved in systemic signalling. Plasmodiophora brassicae seems to suppress plant defence reactions, but information on how this is achieved is scarce. Here, we profile the changes in SA metabolism during Arabidopsis clubroot disease. The accumulation of SA and the emission of methylated SA (methyl salicylate, MeSA) were observed in P. brassicae‐infected Arabidopsis 28 days after inoculation. There is evidence that MeSA is transported from infected roots to the upper plant. Analysis of the mutant Atbsmt1, deficient in the methylation of SA, indicated that the Arabidopsis SA methyltransferase was not responsible for alterations in clubroot symptoms. We found that P. brassicae possesses a methyltransferase (PbBSMT) with homology to plant methyltransferases. The PbBSMT gene is maximally transcribed when SA production is highest. By heterologous expression and enzymatic analyses, we showed that PbBSMT can methylate SA, benzoic and anthranilic acids.  相似文献   

7.
Plants have evolved a series of strategies to combat pathogen infection. Plant SnRK1 is probably involved in shifting carbon and energy use from growth-associated processes to survival and defence upon pathogen attack, enhancing the resistance to many plant pathogens. The present study demonstrated that SnRK1.1 enhanced the resistance of Arabidopsis thaliana to clubroot disease caused by the plant-pathogenic protozoan Plasmodiophora brassicae. Through a yeast two-hybrid assay, glutathione S-transferase pull-down assay, and bimolecular fluorescence complementation assay, a P. brassicae RxLR effector, PBZF1, was shown to interact with SnRK1.1. Further expression level analysis of SnRK1.1-regulated genes showed that PBZF1 inhibited the biological function of SnRK1.1 as indicated by the disequilibration of the expression level of SnRK1.1-regulated genes in heterogeneous PBZF1-expressing A. thaliana. Moreover, heterogeneous expression of PBZF1 in A. thaliana promoted plant susceptibility to clubroot disease. In addition, PBZF1 was found to be P. brassicae-specific and conserved. This gene was significantly highly expressed in resting spores. Taken together, our results provide new insights into how the plant-pathogenic protist P. brassicae employs an effector to overcome plant resistance, and they offer new insights into the genetic improvement of plant resistance against clubroot disease.  相似文献   

8.
9.
Collections of Capsella bursa-pastoris and other common cruciferous weeds showed significant differences in susceptibility to populations of Plasmodiophora brassicae as defined on the European Clubroot Differential (ECD) set. Some evidence was obtained that selection for tolerance may occur within natural populations of C. bursa-pastoris. Overall virulence of P. brassicae collections on the ECD set was not correlated with virulence to the weeds tested. The significance of wild hosts in studies of resistance to P. brassicae is discussed.  相似文献   

10.
11.
12.
Clubroot is a serious threat to canola production in western Canada. The biofungicide Serenade® (Bacillus subtilis QST713) reduced the disease substantially in controlled environment, but showed variable efficacy in field trials. To better understand how this biofungicide works, two of the product components, i.e., B. subtilis and its metabolites (product filtrate), were assessed under controlled conditions for their relative contribution to clubroot control. The information may be used to optimize the product formulation. The bacterium or product filtrate alone was only partially effective against clubroot, reducing disease severity by about 60% relative to untreated controls. In contrast, Serenade controlled the disease by over 90%. This pattern of response was mirrored in quantitative PCR assessment on P. brassicae DNA within canola roots; the lowest and highest amounts of pathogen DNA were found in roots of Serenade treatment (0.02 and 0.01 ng/g) and controls (0.52 and 13.35 ng/g), respectively, at 2 and 3 weeks after treatment. During this period, the amount of DNA changed little in Serenade-treated roots but increased by almost 30-fold in the control. The product filtrate or B. subtilis also reduced the pathogen DNA substantially (0.03–1.16 ng/g). Serenade decreased the germination and viability of P. brassicae resting spores only marginally. It is suggested that biofungicide Serenade controls clubroot largely via suppressing root-hair and cortical infection by P. brassicae zoospores. The bacterial metabolites in the product formulation possibly assist B. subtilis in rhizosphere colonization and clubroot control by minimizing the competition from other soil microbes.  相似文献   

13.
Status and Perspectives of Clubroot Resistance Breeding in Crucifer Crops   总被引:3,自引:0,他引:3  
Clubroot disease is a major threat to crops belonging to the Brassicaceae. It is controlled most effectively by the use of resistant cultivars. Plasmodiophora brassicae, the causal agent, shows a wide variation for pathogenicity, which can be displayed by using differential host sets. Except for Brassica juncea and B. carinata, resistant accessions can be found in all major crops. Most resistance sources are race-specific, despite some race-independent resistant accessions which can be found in B. oleracea. European field isolates from P. brassicae display great variation and show a tendency to overcome different resistance sources from either B. rapa or B. oleracea. At present, resistance genes from stubble turnips (B. rapa) are most effective and most widely used in resistance breeding of different Brassica crops. Resistance to P. brassicae from turnips was introduced into Chinese cabbage, oilseed rape, and B. oleracea. Although most turnips carry more than one resistance gene, the resistant cultivars from other crops received primarily a single, dominant resistance gene having a race-specific effect. Populations of P. brassicae that are compatible against most of the used resistance sources have been present in certain European areas for many decades. Such pathogen populations appeared in Japanese Chinese cabbage crops only a few years after the introduction of resistant cultivars. As the spread of virulent P. brassicae pathotypes seems to be slow, resistant cultivars are still a very effective method of control in many cropping areas. Mapping studies have revealed the presence of several clubroot-resistance genes in the Brassica A and C genomes; most of these genes are showing race specificity. Only in B. oleracea was one broad-spectrum locus detected. Two loci from the A genome confer resistance to more than one pathotype, but not to all isolates. Progress made in the determination of resistance loci should be used to formulate and introduce an improved differential set. Future efforts for breeding P. brassicae resistance will focus on durability by broadening the genetic basis of clubroot resistance by using either natural variation or transgenic strategies.  相似文献   

14.
Integrated Control of Clubroot   总被引:5,自引:0,他引:5  
Clubroot caused by Plasmodiophora brassicae affects the Brassicaceae family of plants, including many important vegetable and broadacre crops. In the last 20 years increasing intensity of vegetable production and the rapid growth in popularity of oilseed rape as a broadacre or arable break crop have increased the severity of clubroot and the area of land affected in both the vegetable and broadacre industries. Resting spores of P. brassicae are long-lived in soil, but the number of spores can be reduced through crop rotation, fallowing, chemical application, and management of brassica weeds. The host-pathogen system is responsive to a range of control measures, including calcium and boron amendments, manipulation of soil pH, and fungicide application. Molecular tests have been developed to predict disease and resistant cultivars are available for some crops. Increasingly, a multifaceted or integrated approach is being used to manage clubroot. This approach has been particularly successful in vegetable production systems.  相似文献   

15.
16.
17.
Bacillus subtilis XF-1 has been used as a biocontrol agent of clubroot disease of crucifers infected by Plasmodiophora brassicae, an obligate pathogen. In order to maximize the growth inhibition of the pathogen, random mutagenesis using N-methyl-N′-nitro-N-nitrosoguanidine was applied to strain XF-1. The efficacy of 226 selected mutants was assessed against the growth of an indicator fungal pathogen: Fusarium solani using agar plate assay and the disruptive effects on the resting spores of P. brassicae. Four mutants exhibited inhibition activity significantly higher than the wild type. The cell extracts of these mutants and the XF-1 were subjected to matrix-assisted laser desorption ionization-time of flight mass spectra analysis, and three families of cyclic lipopeptides (CLPs) fengycin, surfactin and iturin were identified from the parental strain and the screened mutants. However, the relative contents and compound diversity changed after mutagenesis, and there was slight variation in the surfactin and fengycin. Notably, only 5 iturin components were discovered from the wild strain XF-1, but 13 were obtained from the mutant strains, and the relative CLPs contents of all mutant strains increased substantially. The results suggested that CLPs might be one of main biocontrol mechanisms of the clubroot disease by XF-1. The 4 mutants are far more effective than the parental strain, and they would be promising biocontrol candidates not only against P. brassicae but probably other plant diseases caused by fungi.  相似文献   

18.
Metabolism and Plant Hormone Action During Clubroot Disease   总被引:2,自引:0,他引:2  
Infection of Brassicaceae with the obligate biotrophic pathogen Plasmodiophora brassicae results in the development of root galls (clubroots). During the transformation of a healthy root to a root gall a plethora of changes in primary and secondary metabolism occur. The upper part of an infected plant is retarded in growth due to redirection of assimilates from the shoot to the root. In addition, changes in the levels of plant growth regulators, especially auxins and cytokinins, contribute to the hypertrophy of infected roots. Also, defense reactions are manipulated after inoculation of suitable host plants with P. brassicae. This review summarizes our current knowledge on the changes in these parameters. A model is presented for how primary metabolism and secondary metabolism, including plant hormones, interact to induce clubroot formation.  相似文献   

19.
Of the 124 germplasm accession of oil seed Brassicas screened under field condition against clubroot disease (Plasmodiophora brassicae), 80% were susceptible and 17, 3, 1 and 1 of Brassica juncea, Brassica rapa var. toria, B.rapa var. yellow sarson and B. rapa, respectively, were resistant.  相似文献   

20.
H. Takahashi    T. Ishikawa    M. Kaido    K. Takita    T. Hayakawa    K. Okazaki    K. Itoh    T. Mitsui    H. Hori 《Journal of Phytopathology》2006,154(3):156-162
Plasmodiophora brassicae causes clubroot in the turnip, Brassica rapa L. We used organ cultures of adventitious roots from B. rapa seedlings to investigate the initial response of resistant and susceptible cultivars to P. brassicae infection. Primary plasmodia of P. brassicae were observed in root hairs of both susceptible and resistant cultured roots. On the other hand, secondary plasmodia were able to proliferate only in the susceptible root culture but not in the resistant one. Root cultures from the susceptible cultivar all developed clubroot 4 weeks after treatment with 104, 105 or 106 spores/ml, but roots from the resistant cultivar did not develop clubroot under the same conditions. Cell death, as measured by Evans blue and TTC dye methods, was observed in cultured roots from the resistant cultivar but did not occur in roots from the susceptible cultivar after exposure to P. brassicae spores. Cell death was inhibited almost completely by EGTA and verapamil but not by the calmodulin antagonist W7. These results suggest the involvement of Ca2+ in P. brassicae‐induced cell death. Alkalization of the root culture medium of the resistant cultivar was observed 2 days after treatment with P. brassicae spores but was not observed in root culture medium from the susceptible strain. We conclude that our root culture system must be a useful tool for further studies of the molecular mechanism of clubroot resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号