首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar to those described for other insect species. The qPCR analysis revealed that these genes have characteristic expression profiles in insect organs, suggesting that they have specific roles in insect physiology. Recombinant RpACBP-1 was able to bind acyl-CoA in an in vitro gel-shift assay. Moreover, heterologous RpACBP-1 expression in acb1Δ mutant yeast rescued the multi-lobed vacuole phenotype, indicating that RpACBP-1 acts as a bona fide acyl-CoA-binding protein. RpACBP-1 knockdown using RNAi caused triacylglycerol accumulation in the insect posterior midgut and a reduction in the number of deposited eggs. The amount of stored triacylglycerol was reduced in flight muscle, and the incorporation of fatty acids in cholesteryl esters was increased in the fat body. These results showed that RpACBP-1 participates in several lipid metabolism steps in R. prolixus.  相似文献   

2.
3.
Olfaction of Lepidopteran larvae has received little attention, compared to the damage to crops done by insects at this stage. We report that larvae of the diamondback moth Plutella xylostella are attracted to their natural sex pheromone and to their major component (Z)-11-hexadecenal, but only in a food context. For such task they use two general odorant-binding proteins (GOBPs), abundantly expressed in the three major sensilla basiconica of the larval antenna, as shown by whole-mount immunostaining and immunocytochemistry experiments. None of the three genes encoding pheromone-binding proteins (PBPs) are expressed at this stage. Both recombinant GOBPs bind (Z)-11-hexadecenal and the corresponding alcohol, but not the acetate. Binding experiments performed with five mutants of GOBP2, where aromatic residues in the binding pocket were replaced with leucine showed that only one or two amino acid substitutions can completely abolish binding to the pheromone shifting the affinity to plant-derived compounds. We hypothesise that detection of their species-specific pheromone may direct larvae to the sites of foraging chosen by their mother when laying eggs, to find better food, as well as to reduce competition with individuals of the same or other species sharing the same host plant. We also provide evidence that GOBP2 is a narrowly tuned binding protein, whose affinity can be easily switched from linear pheromones to branched plants terpenoids, representing a tool better suited for the simple olfactory system of larvae, as compared to the more sophisticated organ of adults.  相似文献   

4.
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.  相似文献   

5.
6.
Metatropic dysplasia is a congenital skeletal dysplasia characterized by severe platyspondyly, dumbbell-like deformity of long tubular bones, and progressive kyphoscoliosis with growth. It is caused by mutations in the gene TRPV4, encoding the transient receptor potential vanilloid 4, which acts as a calcium channel. Many heterozygous single base mutations of this gene have been associated with the disorder, showing autosomal dominant inheritance. Although abnormal endochondral ossification has been observed by histological examination of bone in a patient with lethal metatropic dysplasia, the etiology of the disorder remains largely unresolved. As dental pulp stem cells (DPSCs) are mesenchymal stem cells that differentiate into bone lineage cells, DPSCs derived from patients with congenital skeletal dysplasia might be useful as a disease-specific cellular model for etiological investigation. The purpose of this study was to clarify the pathological association between TRPV4 mutation and chondrocyte differentiation by analyzing DPSCs from a patient with non-lethal metatropic dysplasia. We identified a novel heterozygous single base mutation, c.1855C>T in TRPV4. This was predicted to be a missense mutation, p.L619F, in putative transmembrane segment 5. The mutation was repaired by CRISPR/Cas9 system to obtain isogenic control DPSCs for further analysis. The expression of stem cell markers and fibroblast-like morphology were comparable between patient-derived mutant and control DPSCs, although expression of TRPV4 was lower in mutant DPSCs than control DPSCs. Despite the lower TRPV4 expression in mutant DPSCs, the intracellular Ca2+ level was comparable at the basal level between mutant and control DPSCs, while its level was markedly higher following stimulation with 4α-phorbol 12,13-didecanoate (4αPDD), a specific agonist for TRPV4, in mutant DPSCs than in control DPSCs. In the presence of 4αPDD, we observed accelerated early chondrocyte differentiation and upregulated mRNA expression of SRY-box 9 (SOX9) in mutant DPSCs. Our findings suggested that the novel missense mutation c.1855C>T of TRPV4 was a gain-of-function mutation leading to enhanced intracellular Ca2+ level, which was associated with accelerated chondrocyte differentiation and SOX9 upregulation. Our results also suggest that patient-derived DPSCs can be a useful disease-specific cellular model for elucidating the pathological mechanism of metatropic dysplasia.  相似文献   

7.
Aminopeptidase N (APN) isoforms from Lepidoptera are known for their involvement in the mode of action of insecticidal Cry proteins from Bacillus thuringiensis. These enzymes belong to a protein family with at least eight different members that are expressed simultaneously in the midgut of lepidopteran larvae. Here, we focus on the characterization of the APNs from Ostrinia nubilalis (OnAPNs) to identify potential Cry receptors. We expressed OnAPNs in insect cells using a baculovirus system and analyzed their enzymatic activity by probing substrate specificity and inhibitor susceptibility. The interaction with Cry1Ab and Cry1Fa proteins (both found in transgenic insect-resistant maize) was evaluated by ligand blot assays and immunocytochemistry. Ligand blots of brush border membrane proteins showed that both Cry proteins bound mainly to a 150 kDa-band, in which OnAPNs were greatly represented. Binding analysis of Cry proteins to the cell-expressed OnAPNs showed that OnAPN1 interacted with both Cry1Ab and Cry1Fa, whereas OnAPN3a and OnAPN8 only bound to Cry1Fa. Two isoforms, OnAPN2 and OnAPN3b, did not interact with any of these two proteins. This work provides the first evidence of a differential role of OnAPN isoforms in the mode of action of Cry proteins in O. nubilalis.  相似文献   

8.
9.
10.
Insects have evolved sophisticated olfactory reception systems to sense exogenous chemical signals. Odorant receptors (ORs) on the membrane of chemosensory neurons are believed to be key molecules in sensing exogenous chemical cues. ORs in different species of insects are diverse and should tune a species to its own specific semiochemicals relevant to their survival. The orthopteran insect, locust (Locusta migratoria), is a model hemimetabolous insect. There is very limited knowledge on the functions of locust ORs although many locust OR genes have been identified in genomic sequencing experiments. In this paper, a locust OR, LmigOR3 was localized to neurons housed in trichoid sensilla by in situ hybridization. LmigOR3 was expressed as a transgene in Drosophila trichoid olfactory neurons (aT1) lacking the endogenous receptor Or67d and the olfactory tuning curve and dose-response curves were established for this locust receptor. The results show that LmigOR3 sensitizes neurons to ketones, esters and heterocyclic compounds, indicating that LmigOR3 is a broadly tuned receptor. LmigOR3 is the first odorant receptor from Orthoptera that has been functionally analyzed in the Drosophila aT1 system. This work demonstrates the utility of the Drosophila aT1 system for functional analysis of locust odorant receptors and suggests that LmigOR3 may be involved in detecting food odorants, or perhaps locust body volatiles that may help us to develop new control methods for locusts.  相似文献   

11.
The adenosine A2A receptor is considered to be an important target for the development of new therapies for Parkinson’s disease. Several antagonists of the A2A receptor have entered clinical trials for this purpose and many research groups have initiated programs to develop A2A receptor antagonists. Most A2A receptor antagonists belong to two different chemical classes, the xanthine derivatives and the amino-substituted heterocyclic compounds. In an attempt to discover high affinity A2A receptor antagonists and to further explore the structure–activity relationships (SARs) of A2A antagonism by the xanthine class of compounds, this study examines the A2A antagonistic properties of series of (E)-8-styrylxanthines, 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines. The results document that among these series, the (E)-8-styrylxanthines have the highest binding affinities with the most potent homologue, (E)-1,3-diethyl-7-methyl-8-[(3-trifluoromethyl)styryl]xanthine, exhibiting a Ki value of 11.9 nM. This compound was also effective in reversing haloperidol-induced catalepsy in rats, providing evidence that it is in fact an A2A receptor antagonist. The importance of substitution at C8 with the styryl moiety was demonstrated by the finding that none of the 8-(phenoxymethyl)xanthines and 8-(3-phenylpropyl)xanthines exhibited high binding affinities for the A2A receptor.  相似文献   

12.
C-type lectins (CTLs) are a large family of Ca2+-dependent carbohydrate-binding proteins recognizing various glycoconjugates and functioning primarily in immunity and cell adhesion. We have identified 34 CTLDP (for CTL-domain protein) genes in the Manduca sexta genome, which encode proteins with one to three CTL domains. CTL-S1 through S9 (S for simple) have one or three CTL domains; immulectin-1 through 19 have two CTL domains; CTL-X1 through X6 (X for complex) have one or two CTL domains along with other structural modules. Nine simple CTLs and seventeen immulectins have a signal peptide and are likely extracellular. Five complex CTLs have both an N-terminal signal peptide and a C-terminal transmembrane region, indicating that they are membrane anchored. Immulectins exist broadly in Lepidoptera and lineage-specific gene duplications have generated three clusters of fourteen genes in the M. sexta genome, thirteen of which have similar expression patterns. In contrast to the family expansion, CTL-S1∼S6, S8, and X1∼X6 have 1:1 orthologs in at least four lepidopteran/dipteran/coleopteran species, suggestive of conserved functions in a wide range of holometabolous insects. Structural modeling suggests the key residues for Ca2+-dependent or independent binding of certain carbohydrates by CTL domains. Promoter analysis identified putative κB motifs in eighteen of the CTL genes, which did not have a strong correlation with immune inducibility in the mRNA or protein levels. Together, the gene identification, sequence comparisons, structure modeling, phylogenetic analysis, and expression profiling establish a solid foundation for future studies of M. sexta CTL-domain proteins.  相似文献   

13.
14.
Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species.  相似文献   

15.
16.
17.
18.
The acrosome complex plays an indispensable role in the normal function of mature spermatozoa. However, the dynamic process of acrosome complex formation in insect remains poorly understood. Gampsocleis gratiosa Brunner von Wattenwyl possesses the typical characteristic of insect sperms, which is tractable in terms of size, and therefore was selected for the acrosome formation study in this report. The results show that acrosome formation can be divided into six phases: round, rotating, rhombic, cylindrical, transforming and mature phase, based on the morphological dynamics of acrosome complex and nucleus. In addition, the cytoskeleton plays a critical role in the process of acrosome formation. The results from this study indicate that: (1) glycoprotein is the major component of the acrosome proper; (2) the microfilament is one element of the acrosome complex, and may mediate the morphologic change of the acrosome complex; (3) the microtubules might also shape the nucleus and acrosome complex during the acrosome formation.  相似文献   

19.
The Australian sheep blowfly, Lucilia cuprina, is a primary cause of sheep flystrike and a major agricultural pest. Cytochrome P450 enzymes have been implicated in the resistance of L. cuprina to several classes of insecticides. In particular, CYP6G3 is a L. cuprina homologue of Drosophila melanogaster CYP6G1, a P450 known to confer multi-pesticide resistance. To investigate the basis of resistance, a bicistronic Escherichia coli expression system was developed to co-express active L. cuprina CYP6G3 and house fly (Musca domestica) P450 reductase. Recombinant CYP6G3 showed activity towards the high-throughput screening substrates, 7-ethoxycoumarin and p-nitroanisole, but not towards p-nitrophenol, coumarin, 7-benzyloxyresorufin, or seven different luciferin derivatives (P450-Glo™ substrates). The addition of house fly cytochrome b5 enhanced the kcat for p-nitroanisole dealkylation approximately two fold (17.8 ± 0.5 vs 9.6 ± 0.2 min−1) with little effect on KM (13 ± 1 vs 10 ± 1 μM). Inhibition studies and difference spectroscopy revealed that the organochlorine compounds, DDT and endosulfan, and the organophosphate pesticides, malathion and chlorfenvinphos, bind to the active site of CYP6G3. All four pesticides showed type I binding spectra with spectral dissociation constants in the micromolar range suggesting that they may be substrates of CYP6G3. While no significant inhibition was seen with the organophosphate, diazinon, or the neonicotinoid, imidacloprid, diazinon showed weak binding in spectral assays, with a Kd value of 23 ± 3 μM CYP6G3 metabolised diazinon to the diazoxon and hydroxydiazinon metabolites and imidacloprid to the 5-hydroxy and olefin metabolites, consistent with a proposed role of CYP6G enzymes in metabolism of phosphorothioate and neonicotinoid insecticides in other species.  相似文献   

20.
Cyanogenic compounds occur widely in the plant kingdom. Therefore, many herbivores are adapted to the presence of these compounds in their diet by either avoiding cyanide release or by efficient cyanide detoxification mechanisms. The mechanisms of adaptation are not fully understood. Larvae of Pieris rapae (Lepidoptera: Pieridae) are specialist herbivores on glucosinolate-containing plants. They are exposed to cyanide during metabolism of phenylacetonitrile, a product of benzylglucosinolate breakdown catalyzed by plant myrosinases and larval nitrile-specifier protein (NSP) in the gut. Cyanide is metabolized to β-cyanoalanine and thiocyanate in the larvae. Here, we demonstrate that larvae of P. rapae possess β-cyanoalanine activity in their gut. We have identified three gut-expressed cDNAs designated PrBSAS1-PrBSAS3 which encode proteins with similarity to β-substituted alanine synthases (BSAS). Characterization of recombinant PrBSAS1-PrBSAS3 shows that they possess β-cyanoalanine activity. In phylogenetic trees, PrBSAS1-PrBSAS3, the first characterized insect BSAS, group together with a characterized mite β-cyanoalanine synthase and bacterial enzymes indicating a similar evolutionary history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号