首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon release from thawing permafrost soils could significantly exacerbate global warming as the active‐layer deepens, exposing more carbon to decay. Plant community and soil properties provide a major control on this by influencing the maximum depth of thaw each summer (active‐layer thickness; ALT), but a quantitative understanding of the relative importance of plant and soil characteristics, and their interactions in determine ALTs, is currently lacking. To address this, we undertook an extensive survey of multiple vegetation and edaphic characteristics and ALTs across multiple plots in four field sites within boreal forest in the discontinuous permafrost zone (NWT, Canada). Our sites included mature black spruce, burned black spruce and paper birch, allowing us to determine vegetation and edaphic drivers that emerge as the most important and broadly applicable across these key vegetation and disturbance gradients, as well as providing insight into site‐specific differences. Across sites, the most important vegetation characteristics limiting thaw (shallower ALTs) were tree leaf area index (LAI), moss layer thickness and understory LAI in that order. Thicker soil organic layers also reduced ALTs, though were less influential than moss thickness. Surface moisture (0–6 cm) promoted increased ALTs, whereas deeper soil moisture (11–16 cm) acted to modify the impact of the vegetation, in particular increasing the importance of understory or tree canopy shading in reducing thaw. These direct and indirect effects of moisture indicate that future changes in precipitation and evapotranspiration may have large influences on ALTs. Our work also suggests that forest fires cause greater ALTs by simultaneously decreasing multiple ecosystem characteristics which otherwise protect permafrost. Given that vegetation and edaphic characteristics have such clear and large influences on ALTs, our data provide a key benchmark against which to evaluate process models used to predict future impacts of climate warming on permafrost degradation and subsequent feedback to climate.  相似文献   

2.
Vast amounts of carbon are bound in both active layer and permafrost soils in the Arctic. As a consequence of climate warming, the depth of the active layer is increasing in size and permafrost soils are thawing. We hypothesize that pulses of biogenic volatile organic compounds are released from the near‐surface active layer during spring, and during late summer season from thawing permafrost, while the subsequent biogeochemical processes occurring in thawed soils also lead to emissions. Biogenic volatile organic compounds are reactive gases that have both negative and positive climate forcing impacts when introduced to the Arctic atmosphere, and the knowledge of their emission magnitude and pattern is necessary to construct reliable climate models. However, it is unclear how different ecosystems and environmental factors such as drainage conditions upon permafrost thaw affect the emission and compound composition. Here we show that incubations of frozen B horizon of the active layer and permafrost soils collected from a High Arctic heath and fen release a range of biogenic volatile organic compounds upon thaw and during subsequent incubation experiments at temperatures of 10°C and 20°C. Meltwater drainage in the fen soils increased emission rates nine times, while having no effect in the drier heath soils. Emissions generally increased with temperature, and emission profiles for the fen soils were dominated by benzenoids and alkanes, while benzenoids, ketones, and alcohols dominated in heath soils. Our results emphasize that future changes affecting the drainage conditions of the Arctic tundra will have a large influence on volatile emissions from thawing permafrost soils – particularly in wetland/fen areas.  相似文献   

3.
Shrub expansion may reduce summer permafrost thaw in Siberian tundra   总被引:1,自引:0,他引:1  
Climate change is expected to cause extensive vegetation changes in the Arctic: deciduous shrubs are already expanding, in response to climate warming. The results from transect studies suggest that increasing shrub cover will impact significantly on the surface energy balance. However, little is known about the direct effects of shrub cover on permafrost thaw during summer. We experimentally quantified the influence of Betula nana cover on permafrost thaw in a moist tundra site in northeast Siberia with continuous permafrost. We measured the thaw depth of the soil, also called the active layer thickness (ALT), ground heat flux and net radiation in 10 m diameter plots with natural B. nana cover (control plots) and in plots in which B. nana was removed (removal plots). Removal of B. nana increased ALT by 9% on average late in the growing season, compared with control plots. Differences in ALT correlated well with differences in ground heat flux between the control plots and B. nana removal plots. In the undisturbed control plots, we found an inverse correlation between B. nana cover and late growing season ALT. These results suggest that the expected expansion of deciduous shrubs in the Arctic region, triggered by climate warming, may reduce summer permafrost thaw. Increased shrub growth may thus partially offset further permafrost degradation by future temperature increases. Permafrost models need to include a dynamic vegetation component to accurately predict future permafrost thaw.  相似文献   

4.
In the Low Arctic, a warming climate is increasing rates of permafrost degradation and altering vegetation. Disturbance associated with warming permafrost can change microclimate and expose areas of ion-rich mineral substrate for colonization by plants. Consequently, the response of vegetation to warming air temperatures may differ significantly from disturbed to undisturbed tundra. Across a latitudinal air temperature gradient, we tested the hypothesis that the microenvironment in thaw slumps would be warmer and more nutrient rich than undisturbed tundra, resulting in altered plant community composition and increased green alder ( Alnus viridis subsp. fruticosa ) growth and reproduction. Our results show increased nutrient availability, soil pH, snow pack, ground temperatures, and active layer thickness in disturbed terrain and suggest that these variables are important drivers of plant community structure. We also found increased productivity, catkin production, and seed viability of green alder at disturbed sites. Altered community composition and enhancement of alder growth and reproduction show that disturbances exert a strong influence on deciduous shrubs that make slumps potential seed sources for undisturbed tundra. Overall, these results indicate that accelerated disturbance regimes have the potential to magnify the effects of warming temperature on vegetation. Consequently, understanding the relative effects of temperature and disturbance on Arctic plant communities is critical to predicting feedbacks between northern ecosystems and global climate change.  相似文献   

5.
Leachate from litter and vegetation penetrates permafrost surface soils during thaw before being exported to aquatic systems. We know this leachate is critical to ecosystem function downstream and hypothesized that thaw leachate inputs would also drive terrestrial microbial activity and nutrient uptake. However, we recognized two potential endpoint scenarios: vegetation leachate is an important source of C for microbes in thawing soil; or vegetation leachate is irrelevant next to the large background C, N, and P pools in thaw soil solution. We assessed these potential outcomes by making vegetation leachate from frozen vegetation and litter in four Arctic ecosystems that have a variety of litter quality and soil C, N, and P contents; one of these ecosystems included a disturbance recovery chronosequence that allowed us to test our second hypothesis that thaw leachate response would be enhanced in disturbed ecosystems. We added water or vegetation leachate to intact, frozen, winter soil cores and incubated the cores through thaw. We measured soil respiration throughout, and soil solution and microbial biomass C, N, and P pools and gross N mineralization immediately after a thaw incubation (?10 to 2°C) lasting 6 days. Vegetation leachate varied strongly by ecosystem in C, N, and P quantity and stoichiometry. Regardless, all vegetated ecosystems responded to leachate additions at thaw with an increase in the microbial biomass phosphate flush and an increase in soil solution carbon and nitrogen, implying a selective microbial uptake of phosphate from plant and litter leachate at thaw. This response to leachate additions was absent in recently disturbed, exposed mineral soil but otherwise did not differ between disturbed and undisturbed ecosystems. The selective uptake of P by microbes implies either thaw microbial P limitation or thaw microbial P uptake opportunism, and that spring thaw is an important time for P retention in several Arctic ecosystems.  相似文献   

6.
Boreal peatlands are critical ecosystems globally because they house 30%–40% of terrestrial carbon (C), much of which is stored in permafrost soil vulnerable to climate warming‐induced thaw. Permafrost thaw leads to thickening of the active (seasonally thawed) layer and alters nutrient and light availability. These physical changes may influence community‐level plant functional traits through intraspecific trait variation and/or species turnover. As permafrost thaw is expected to cause an efflux of carbon dioxide (CO2) and methane (CH4) from the soil to the atmosphere, it is important to understand thaw‐induced changes in plant community productivity to evaluate whether these changes may offset some of the anticipated increases in C emissions. To this end, we collected vascular plant community composition and foliar functional trait data along gradients in aboveground tree biomass and active layer thickness (ALT) in a rapidly thawing boreal peatland, with the expectation that changes in above‐ and belowground conditions are indicative of altered resource availability. We aimed to determine whether community‐level traits vary across these gradients, and whether these changes are dominated by intraspecific trait variation, species turnover, or both. Our results highlight that variability in community‐level traits was largely attributable to species turnover and that both community composition and traits were predominantly driven by ALT. Specifically, thicker active layers associated with permafrost‐free peatlands (i.e., bogs and fens) shifted community composition from slower‐growing evergreen shrubs to faster‐growing graminoids and forbs with a corresponding shift toward more productive trait values. The results from this rapidly thawing peatland suggest that continued warming‐induced permafrost thaw and thermokarst development alter plant community composition and community‐level traits and thus ecosystem productivity. Increased productivity may help to mitigate anticipated CO2 efflux from thawing permafrost, at least in the short term, though this response may be swamped by increase CH4 release.  相似文献   

7.
Many of the world's northern peatlands are underlain by rapidly thawing permafrost. Because plant production in these peatlands is often nitrogen (N)‐limited, a release of N stored in permafrost may stimulate net primary production or change species composition if it is plant‐available. In this study, we aimed to quantify plant‐available N in thawing permafrost soils of subarctic peatlands. We compared plant‐available N‐pools and ‐fluxes in near‐surface permafrost (0–10 cm below the thawfront) to those taken from a current rooting zone layer (5–15 cm depth) across five representative peatlands in subarctic Sweden. A range of complementary methods was used: extractions of inorganic and organic N, inorganic and organic N‐release measurements at 0.5 and 11 °C (over 120 days, relevant to different thaw‐development scenarios) and a bioassay with Poa alpina test plants. All extraction methods, across all peatlands, consistently showed up to seven times more plant‐available N in near‐surface permafrost soil compared to the current rooting zone layer. These results were supported by the bioassay experiment, with an eightfold larger plant N‐uptake from permafrost soil than from other N‐sources such as current rooting zone soil or fresh litter substrates. Moreover, net mineralization rates were much higher in permafrost soils compared to soils from the current rooting zone layer (273 mg N m?2 and 1348 mg N m?2 per growing season for near‐surface permafrost at 0.5 °C and 11 °C respectively, compared to ?30 mg N m?2 for current rooting zone soil at 11 °C). Hence, our results demonstrate that near‐surface permafrost soil of subarctic peatlands can release a biologically relevant amount of plant available nitrogen, both directly upon thawing as well as over the course of a growing season through continued microbial mineralization of organically bound N. Given the nitrogen‐limited nature of northern peatlands, this release may have impacts on both plant productivity and species composition.  相似文献   

8.
Aim The purpose of this study is to develop palaeovegetation zonation models for central and north‐central North America, based on late‐Quaternary and Holocene pollen stratigraphic data (n = 246 sites). A secondary purpose was to evaluate an hypothesis ( Strong & Hills, 2003 ) to explain the disjunct distribution of species in western Alberta. Location Hudson Bay‐Lake Michigan to the Rocky Mountains region, north of 36° N to the Arctic Ocean (c. 70° N). Methods Pollen profiles spanning 40 years of palaeoecological research in North America were extracted from published and unpublished archival sources. Individual profiles were subdivided into 1000‐year increments based on the assumption of a constant sedimentation rate between stratigraphic dates (e.g. surface sediments, radiocarbon 14C dates, tephra layers). The pollen composition among profiles was standardized to 54 commonly recognized taxa, with percentage composition within each stratigraphic sample prorated to 100% prior to analysis. Near‐surface sediments from these profiles were included as analogues of modern vegetation. Cluster analysis was used as a guide to the classification of 2356 temporal stratigraphic samples, which resulted in the recognition of 16 pollen groups. These groups were summarized in terms of their pollen composition, mapped, and used in combination with terrain information and an ecological knowledge of the study area to construct six physiognomically‐based palaeovegetation zonation models at 2000‐year intervals from 14,000 to 4000 yr bp (radiocarbon years before present). Results The 14,000 yr bp model placed Boreal and Cordilleran Forests proximal to the southern glacial front, whereas Arctic tundra dominated the Yukon Territory–Alaska ice‐free zone. Pollen and macrofossil evidence suggests that this Boreal Forest zone contained a mixture of coniferous and deciduous tree species. Grassland was postulated immediately south of the forest zone, with its northern extreme near 49° N latitude in the Alberta–Montana border area. Separation of the Laurentide and Cordilleran glacial fronts about 12,000 yr bp initiated the northward advance of Boreal Forests into western Canada. By the end of the Hypsithermal at about 6000 yr bp , Boreal Forests occurred near the Arctic Ocean, and Grassland and Aspen Parkland zones may have extended to 54° N and 59° N latitude in Alberta, respectively. Between 6000 and 4000 yr bp , a 5° and 1° latitudinal southward shift of the northern Boreal Forest and Grassland/Aspen Parkland boundaries occurred, respectively, near their contemporary positions with corresponding expansions of the Subarctic and Arctic zones. Modern Canadian Cordilleran Forests along the eastern slopes of the Rocky Mountains were interpreted as originating from the north‐central Montana–south‐western Alberta area. Jack pine (Pinus banksiana Lamb.), a common Boreal Forest species, appears to have entered central Canada via the north side of Lake Superior after 11,000 yr bp . Main conclusions Modern vegetation in central Canada evolved from biomes located in the northern USA during the late‐Quaternary. The Boreal Forest biome contained the same arboreal taxa as the modern vegetation, except it lacked jack pine. The proposed regional palaeovegetation models support the hypothesis of Strong & Hills (2003) , but new independent palaeoecological data will be needed for a proper evaluation.  相似文献   

9.
The majority of northern peatlands were initiated during the Holocene. Owing to their mass imbalance, they have sequestered huge amounts of carbon in terrestrial ecosystems. Although recent syntheses have filled some knowledge gaps, the extent and remoteness of many peatlands pose challenges to developing reliable regional carbon accumulation estimates from observations. In this work, we employed an individual‐ and patch‐based dynamic global vegetation model (LPJ‐GUESS) with peatland and permafrost functionality to quantify long‐term carbon accumulation rates in northern peatlands and to assess the effects of historical and projected future climate change on peatland carbon balance. We combined published datasets of peat basal age to form an up‐to‐date peat inception surface for the pan‐Arctic region which we then used to constrain the model. We divided our analysis into two parts, with a focus both on the carbon accumulation changes detected within the observed peatland boundary and at pan‐Arctic scale under two contrasting warming scenarios (representative concentration pathway—RCP8.5 and RCP2.6). We found that peatlands continue to act as carbon sinks under both warming scenarios, but their sink capacity will be substantially reduced under the high‐warming (RCP8.5) scenario after 2050. Areas where peat production was initially hampered by permafrost and low productivity were found to accumulate more carbon because of the initial warming and moisture‐rich environment due to permafrost thaw, higher precipitation and elevated CO2 levels. On the other hand, we project that areas which will experience reduced precipitation rates and those without permafrost will lose more carbon in the near future, particularly peatlands located in the European region and between 45 and 55°N latitude. Overall, we found that rapid global warming could reduce the carbon sink capacity of the northern peatlands in the coming decades.  相似文献   

10.
Arctic tundra vegetation composition is expected to undergo rapid changes during the coming decades because of changes in climate. Higher air temperatures generally favor growth of deciduous shrubs, often at the cost of moss growth. Mosses are considered to be very important to critical tundra ecosystem processes involved in water and energy exchange, but very little empirical data are available. Here, we studied the effect of experimental moss removal on both understory evapotranspiration and ground heat flux in plots with either a thin or a dense low shrub canopy in a tundra site with continuous permafrost in Northeast Siberia. Understory evapotranspiration increased with removal of the green moss layer, suggesting that most of the understory evapotranspiration originated from the organic soil layer underlying the green moss layer. Ground heat flux partitioning also increased with green moss removal indicating the strong insulating effect of moss. No significant effect of shrub canopy density on understory evapotranspiration was measured, but ground heat flux partitioning was reduced by a denser shrub canopy. In summary, our results show that mosses may exert strong controls on understory water and heat fluxes. Changes in moss or shrub cover may have important consequences for summer permafrost thaw and concomitant soil carbon release in Arctic tundra ecosystems.  相似文献   

11.
Arctic and Boreal terrestrial ecosystems are important components of the climate system because they contain vast amounts of soil carbon (C). Evidence suggests that deciduous shrubs are increasing in abundance, but the implications for ecosystem C budgets remain uncertain. Using midsummer CO2 flux data from 21 sites spanning 16° of latitude in the Arctic and Boreal biomes, we show that air temperature explains c. one‐half of the variation in ecosystem respiration (ER) and that ER drives the pattern in net ecosystem CO2 exchange across ecosystems. Woody sites were slightly stronger C sinks compared with herbaceous communities. However, woody sites with warm soils (> 10 °C) were net sources of CO2, whereas woody sites with cold soils (< 10 °C) were strong sinks. Our results indicate that transition to a shrub‐dominated Arctic will increase the rate of C cycling, and may lead to net C loss if soil temperatures rise.  相似文献   

12.
In terrestrial high‐latitude regions, observations indicate recent changes in snow cover, permafrost, and soil freeze–thaw transitions due to climate change. These modifications may result in temporal shifts in the growing season and the associated rates of terrestrial productivity. Changes in productivity will influence the ability of these ecosystems to sequester atmospheric CO2. We use the terrestrial ecosystem model (TEM), which simulates the soil thermal regime, in addition to terrestrial carbon (C), nitrogen and water dynamics, to explore these issues over the years 1960–2100 in extratropical regions (30–90°N). Our model simulations show decreases in snow cover and permafrost stability from 1960 to 2100. Decreases in snow cover agree well with National Oceanic and Atmospheric Administration satellite observations collected between the years 1972 and 2000, with Pearson rank correlation coefficients between 0.58 and 0.65. Model analyses also indicate a trend towards an earlier thaw date of frozen soils and the onset of the growing season in the spring by approximately 2–4 days from 1988 to 2000. Between 1988 and 2000, satellite records yield a slightly stronger trend in thaw and the onset of the growing season, averaging between 5 and 8 days earlier. In both, the TEM simulations and satellite records, trends in day of freeze in the autumn are weaker, such that overall increases in growing season length are due primarily to earlier thaw. Although regions with the longest snow cover duration displayed the greatest increase in growing season length, these regions maintained smaller increases in productivity and heterotrophic respiration than those regions with shorter duration of snow cover and less of an increase in growing season length. Concurrent with increases in growing season length, we found a reduction in soil C and increases in vegetation C, with greatest losses of soil C occurring in those areas with more vegetation, but simulations also suggest that this trend could reverse in the future. Our results reveal noteworthy changes in snow, permafrost, growing season length, productivity, and net C uptake, indicating that prediction of terrestrial C dynamics from one decade to the next will require that large‐scale models adequately take into account the corresponding changes in soil thermal regimes.  相似文献   

13.
Recent attention regarding the impacts of oil and gas development and exploitation has focused on the unintentional release of hydrocarbons into the environment, whilst the potential negative effects of other possible avenues of environmental contamination are less well documented. In the hydrocarbon-rich and ecologically sensitive Mackenzie Delta region (NT, Canada), saline wastes associated with hydrocarbon exploration have typically been disposed of in drilling sumps (i.e., large pits excavated into the permafrost) that were believed to be a permanent containment solution. However, failure of permafrost as a waste containment medium may cause impacts to lakes in this sensitive environment. Here, we examine the effects of degrading drilling sumps on water quality by combining paleolimnological approaches with the analysis of an extensive present-day water chemistry dataset. This dataset includes lakes believed to have been impacted by saline drilling fluids leaching from drilling sumps, lakes with no visible disturbances, and lakes impacted by significant, naturally occurring permafrost thaw in the form of retrogressive thaw slumps. We show that lakes impacted by compromised drilling sumps have significantly elevated lakewater conductivity levels compared to control sites. Chloride levels are particularly elevated in sump-impacted lakes relative to all other lakes included in the survey. Paleolimnological analyses showed that invertebrate assemblages appear to have responded to the leaching of drilling wastes by a discernible increase in a taxon known to be tolerant of elevated conductivity coincident with the timing of sump construction. This suggests construction and abandonment techniques at, or soon after, sump establishment may result in impacts to downstream aquatic ecosystems. With hydrocarbon development in the north predicted to expand in the coming decades, the use of sumps must be examined in light of the threat of accelerated permafrost thaw, and the potential for these industrial wastes to impact sensitive Arctic ecosystems.  相似文献   

14.
Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high‐arctic tundra heath sites in NE‐Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above‐ and belowground tundra carbon turnover, possibly governed by microbial resource availability.  相似文献   

15.
Permafrost nitrogen status and its determinants on the Tibetan Plateau   总被引:1,自引:0,他引:1  
It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large‐scale field investigation along a 1,000 km transect and a laboratory incubation experiment with a 15N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.  相似文献   

16.
Vegetation, active-layer soils, and snow cover regulate energy exchange between the atmosphere and permafrost. Therefore, interactions between changes to tundra vegetation and soil thermal regime will fundamentally affect permafrost in a warmer world. We recorded soil temperatures for approximately 1 year in a Siberian Low Arctic landscape with a known history of alder (Alnus) shrub expansion on disturbed microsites in patterned ground. We recorded near-surface soil temperatures and measured physical properties of soils and vegetation on sorted-circle microsites in four stages of shrubland development: (1) tundra lacking tall shrubs; (2) shrub colonization zones; (3) mature shrublands; and (4) paludified, long-established shrublands with thick soil organic layers. Summer soil temperatures declined with increasing shrub cover and soil organic thickness; shrub colonization suppressed cryoturbation, facilitating the development of continuous vegetation and a surface organic mat on circles. Compared to open tundra, mature shrubs cooled soils by up to 9 °C during summer, but warmed soils by greater than 10 °C in winter presumably because they developed highly insulative snowpacks. Paludified shrublands had the coldest summer active layers, but winter soil temperatures were much colder than mature shrublands and were similar to earlier stages. Our results indicate that although tall shrub establishment dramatically warms winter soils within decades, much of this warming is transient at paludification-prone sites because the buildup of wet peat favors cooling in winter and the stature and snow-trapping capacity of shrubs diminish over time. In the ecosystem we studied, shrub expansion has contrasting effects on active-layer temperatures both seasonally and over longer timescales due to successional processes.  相似文献   

17.
Changes in climate could have far-reaching consequences for ecosystems sensitive to changes in temperature and precipitation, such as boreal permafrost peatlands and grassland/woodland boundaries. The long-term data from our studies in these ecosystems suggest that transient responses of permafrost and vegetation to climate change may be difficult to predict due to lags and positive feedbacks related to vegetation and disturbance. Boreal permafrost peatlands comprise an ecosystem with strong local controls on microclimate that influence the formation and thaw of permafrost. These local controls may preserve permafrost during the transient stages of climate warming, producing lagged responses. The prairie–forest border region of the northern Great Plains has experienced frequent change and has complex dynamics involving transitions in the grassland composition of prairie and in the degree of woodiness in bordering forests. Fire frequency interacts with fuel loading and tree recruitment in ways that affect the timing and direction of change. Lags and thresholds could lead to sudden large responses to future climate change that are not readily apparent from current vegetation. The creation of adequate models to characterize transient ecosystem changes will require an understanding of the linkages among processes operating at the scale of 10s of meters and over long time periods. Received 14 December 1999; accepted 7 July 2000.  相似文献   

18.
Perennially frozen soil in high latitude ecosystems (permafrost) currently stores 1330–1580 Pg of carbon (C). As these ecosystems warm, the thaw and decomposition of permafrost is expected to release large amounts of C to the atmosphere. Fortunately, losses from the permafrost C pool will be partially offset by increased plant productivity. The degree to which plants are able to sequester C, however, will be determined by changing nitrogen (N) availability in these thawing soil profiles. N availability currently limits plant productivity in tundra ecosystems but plant access to N is expected improve as decomposition increases in speed and extends to deeper soil horizons. To evaluate the relationship between permafrost thaw and N availability, we monitored N cycling during 5 years of experimentally induced permafrost thaw at the Carbon in Permafrost Experimental Heating Research (CiPEHR) project. Inorganic N availability increased significantly in response to deeper thaw and greater soil moisture induced by Soil warming. This treatment also prompted a 23% increase in aboveground biomass and a 49% increase in foliar N pools. The sedge Eriophorum vaginatum responded most strongly to warming: this species explained 91% of the change in aboveground biomass during the 5 year period. Air warming had little impact when applied alone, but when applied in combination with Soil warming, growing season soil inorganic N availability was significantly reduced. These results demonstrate that there is a strong positive relationship between the depth of permafrost thaw and N availability in tundra ecosystems but that this relationship can be diminished by interactions between increased thaw, warmer air temperatures, and higher levels of soil moisture. Within 5 years of permafrost thaw, plants actively incorporate newly available N into biomass but C storage in live vascular plant biomass is unlikely to be greater than losses from deep soil C pools.  相似文献   

19.
In the sporadic permafrost zone of North America, thaw‐induced boreal forest loss is leading to permafrost‐free wetland expansion. These land cover changes alter landscape‐scale surface properties with potentially large, however, still unknown impacts on regional climates. In this study, we combine nested eddy covariance flux tower measurements with satellite remote sensing to characterize the impacts of boreal forest loss on albedo, eco‐physiological and aerodynamic surface properties, and turbulent energy fluxes of a lowland boreal forest region in the Northwest Territories, Canada. Planetary boundary layer modelling is used to estimate the potential forest loss impact on regional air temperature and atmospheric moisture. We show that thaw‐induced conversion of forests to wetlands increases albedo: and bulk surface conductance for water vapour and decreases aerodynamic surface temperature. At the same time, heat transfer efficiency is reduced. These shifts in land surface properties increase latent at the expense of sensible heat fluxes, thus, drastically reducing Bowen ratios. Due to the lower albedo of forests and their masking effect of highly reflective snow, available energy is lower in wetlands, especially in late winter. Modelling results demonstrate that a conversion of a present‐day boreal forest–wetland to a hypothetical homogeneous wetland landscape could induce a near‐surface cooling effect on regional air temperatures of up to 3–4 °C in late winter and 1–2 °C in summer. An atmospheric wetting effect in summer is indicated by a maximum increase in water vapour mixing ratios of 2 mmol mol?1. At the same time, maximum boundary layer heights are reduced by about a third of the original height. In fall, simulated air temperature and atmospheric moisture between the two scenarios do not differ. Therefore, permafrost thaw‐induced boreal forest loss may modify regional precipitation patterns and slow down regional warming trends.  相似文献   

20.
Understanding the response of permafrost microbial communities to climate warming is crucial for evaluating ecosystem feedbacks to global change. This study investigated soil bacterial and archaeal communities by Illumina MiSeq sequencing of 16S rRNA gene amplicons across a permafrost thaw gradient at different depths in Alaska with thaw progression for over three decades. Over 4.6 million passing 16S rRNA gene sequences were obtained from a total of 97 samples, corresponding to 61 known classes and 470 genera. Soil depth and the associated soil physical–chemical properties had predominant impacts on the diversity and composition of the microbial communities. Both richness and evenness of the microbial communities decreased with soil depth. Acidobacteria, Verrucomicrobia, Alpha‐ and Gamma‐Proteobacteria dominated the microbial communities in the upper horizon, whereas abundances of Bacteroidetes, Delta‐Proteobacteria and Firmicutes increased towards deeper soils. Effects of thaw progression were absent in microbial communities in the near‐surface organic soil, probably due to greater temperature variation. Thaw progression decreased the abundances of the majority of the associated taxa in the lower organic soil, but increased the abundances of those in the mineral soil, including groups potentially involved in recalcitrant C degradation (Actinomycetales, Chitinophaga, etc.). The changes in microbial communities may be related to altered soil C sources by thaw progression. Collectively, this study revealed different impacts of thaw in the organic and mineral horizons and suggests the importance of studying both the upper and deeper soils while evaluating microbial responses to permafrost thaw.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号