首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The evolution of five chromosomes of Brachypodium distachyon from a 12-chromosome ancestor of all grasses by dysploidy raises an interesting question about the fate of redundant centromeres. Three independent but complementary approaches were pursued to study centromeric region homologies among the chromosomes of Brachypodium, wheat, and rice. The genes present in pericentromeres of the basic set of seven chromosomes of wheat and the Triticeae, and the 80 rice centromeric genes spanning the CENH3 binding domain of centromeres 3, 4, 5, 7, and 8 were used as “anchor” markers to identify centromere locations in the B. distachyon chromosomes. A total of 53 B. distachyon bacterial artificial chromosome (BAC) clones anchored by wheat pericentromeric expressed sequence tags (ESTs) were used as probes for BAC-fluorescence in situ hybridization (FISH) analysis of B. distachyon mitotic chromosomes. Integrated sequence alignment and BAC-FISH data were used to determine the approximate positions of active and inactive centromeres in the five B. distachyon chromosomes. The following syntenic relationships of the centromeres for Brachypodium (Bd), rice (R), and wheat (W) were evident: Bd1-R6, Bd2-R5-W1, Bd3-R10, Bd4-R11-W4, and Bd5-R4. Six rice centromeres syntenic to five wheat centromeres were inactive in Brachypodium chromosomes. The conservation of centromere gene synteny among several sets of homologous centromeres of three species indicates that active genes can persist in ancient centromeres with more than 40 million years of shared evolutionary history. Annotation of a BAC contig spanning an inactive centromere in chromosome Bd3 which is syntenic to rice Cen8 and W7 pericentromeres, along with BAC FISH data from inactive centromeres revealed that the centromere inactivation was accompanied by the loss of centromeric retrotransposons and turnover of centromere-specific satellites during Bd chromosome evolution.  相似文献   

2.
Arabidopsis thaliana has become a major plant research model, where interphase nuclear organization exhibits unique features, including nucleolus-associated telomere clustering. The chromocenter (CC)-loop model, or rosette-like configuration, describes intranuclear chromatin organization in Arabidopsis as megabase-long loops anchored in, and emanating from, peripherally positioned CCs, with those containing telomeres associating with the nucleolus. To investigate whether the CC-loop organization is universal across the mustard family (crucifers), the nuclear distributions of centromeres, telomeres and nucleoli were analyzed by fluorescence in situ hybridization in seven diploid species (2n = 10–16) representing major crucifer clades with an up to 26-fold variation in genome size (160–4260 Mb). Nucleolus-associated telomere clustering was confirmed in Arabidopsis (157 Mb) and was newly identified as the major nuclear phenotype in other species with a small genome (215–381 Mb). In large-genome species (2611–4264 Mb), centromeres and telomeres adopted a Rabl-like configuration or dispersed distribution in the nuclear interior; telomeres only rarely associated with the nucleolus. In Arabis cypria (381 Mb) and Bunias orientalis (2611 Mb), tissue-specific patterns deviating from the major nuclear phenotypes were observed in anther and stem tissues, respectively. The rosette-like configuration, including nucleolus-associated telomere clustering in small-genome species from different infrafamiliar clades, suggests that genomic properties rather than phylogenetic position determine the interphase nuclear organization. Our data suggest that nuclear genome size, average chromosome size and degree of longitudinal chromosome compartmentalization affect interphase chromosome organization in crucifer genomes.  相似文献   

3.
The Tetraodontidae family are known to have relatively small and compact genomes compared to other vertebrates. The obscure puffer fish Takifugu obscurus is an anadromous species that migrates to freshwater from the sea for spawning. Thus the euryhaline characteristics of T. obscurus have been investigated to gain understanding of their survival ability, osmoregulation, and other homeostatic mechanisms in both freshwater and seawater. In this study, a high quality chromosome‐level reference genome for T. obscurus was constructed using long‐read Pacific Biosciences (PacBio) Sequel sequencing and a Hi‐C‐based chromatin contact map platform. The final genome assembly of T. obscurus is 381 Mb, with a contig N50 length of 3,296 kb and longest length of 10.7 Mb, from a total of 62 Gb of raw reads generated using single‐molecule real‐time sequencing technology from a PacBio Sequel platform. The PacBio data were further clustered into chromosome‐scale scaffolds using a Hi‐C approach, resulting in a 373 Mb genome assembly with a contig N50 length of 15.2 Mb and and longest length of 28 Mb. When we directly compared the 22 longest scaffolds of T. obscurus to the 22 chromosomes of the tiger puffer Takifugu rubripes, a clear one‐to‐one orthologous relationship was observed between the two species, supporting the chromosome‐level assembly of T. obscurus. This genome assembly can serve as a valuable genetic resource for exploring fugu‐specific compact genome characteristics, and will provide essential genomic information for understanding molecular adaptations to salinity fluctuations and the evolution of osmoregulatory mechanisms.  相似文献   

4.
The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a de novo chromosome‐scale assembly of the genome of the orange clownfish Amphiprion percula. We utilized single‐molecule real‐time sequencing technology from Pacific Biosciences to produce an initial polished assembly comprised of 1,414 contigs, with a contig N50 length of 1.86 Mb. Using Hi‐C‐based chromatin contact maps, 98% of the genome assembly were placed into 24 chromosomes, resulting in a final assembly of 908.8 Mb in length with contig and scaffold N50s of 3.12 and 38.4 Mb, respectively. This makes it one of the most contiguous and complete fish genome assemblies currently available. The genome was annotated with 26,597 protein‐coding genes and contains 96% of the core set of conserved actinopterygian orthologs. The availability of this reference genome assembly as a community resource will further strengthen the role of the orange clownfish as a model species for research on the ecology and evolution of reef fishes.  相似文献   

5.
Culex pipiens molestus and Culex pipiens pallens are two distinct bioforms in the Culex pipiens complex that are important vectors of several pathogens and are widely distributed around the world. In the current study, we present a high-quality chromosome-level genome of Cx. pipiens f. molestus and describe the genetic characteristics of this genome. The assembly genome was 559.749 Mb with contig and scaffold N50 values of 200.952 Mb and 0.370 Mb, and more than 94.78% of the assembled bases were located on 3 chromosomes. A total of 19,399 protein-coding genes were predicted. Many gene families were expanded in the genome of Cx. pipiens f. molestus, particularly those of the chemosensory protein (CSP) and gustatory receptor (GR) gene families. In addition, utilizing Hi-C data, we improved the previously assembled draft genome of Cx. pipiens f. pallens, with scaffold N50 of 186.195 Mb and contig N50 of 0.749 Mb, and more than 97.02% of the assembled bases were located on three chromosomes. This reference genome provides a foundation for genome-based investigations of the unique ecological and evolutionary characteristics of Cx. pipiens f. molestus, and the findings in this study will help to elucidate the mechanisms involved in species divergence in the Culex pipiens complex.  相似文献   

6.
Sequence and structure of Brassica rapa chromosome A3   总被引:1,自引:0,他引:1  

Background

The species Brassica rapa includes important vegetable and oil crops. It also serves as an excellent model system to study polyploidy-related genome evolution because of its paleohexaploid ancestry and its close evolutionary relationships with Arabidopsis thaliana and other Brassica species with larger genomes. Therefore, its genome sequence will be used to accelerate both basic research on genome evolution and applied research across the cultivated Brassica species.

Results

We have determined and analyzed the sequence of B. rapa chromosome A3. We obtained 31.9 Mb of sequences, organized into nine contigs, which incorporated 348 overlapping BAC clones. Annotation revealed 7,058 protein-coding genes, with an average gene density of 4.6 kb per gene. Analysis of chromosome collinearity with the A. thaliana genome identified conserved synteny blocks encompassing the whole of the B. rapa chromosome A3 and sections of four A. thaliana chromosomes. The frequency of tandem duplication of genes differed between the conserved genome segments in B. rapa and A. thaliana, indicating differential rates of occurrence/retention of such duplicate copies of genes. Analysis of 'ancestral karyotype' genome building blocks enabled the development of a hypothetical model for the derivation of the B. rapa chromosome A3.

Conclusions

We report the near-complete chromosome sequence from a dicotyledonous crop species. This provides an example of the complexity of genome evolution following polyploidy. The high degree of contiguity afforded by the clone-by-clone approach provides a benchmark for the performance of whole genome shotgun approaches presently being applied in B. rapa and other species with complex genomes.  相似文献   

7.
A fine physical map of the rice (Oryza sativa spp. Japonica var. Nipponbare) chromosome 5 with bacterial artificial chromosome (BAC) and PI-derived artificial chromosome (PAC) clones was constructed through integration of 280 sequenced BAC/PAC clones and 232 sequence tagged site/expressed sequence tag markers with the use of fingerprinted contig data of the Nipponbare genome. This map consists of five contigs covering 99% of the estimated chromosome size (30.08 Mb). The four physical gaps were estimated at 30 and 20 kb for gaps 1–3 and gap 4, respectively. We have submitted 42.2-Mb sequences with 29.8 Mb of nonoverlapping sequences to public databases. BAC clones corresponding to telomere and centromere regions were confirmed by BAC-fluorescence in situ hybridization (FISH) on a pachytene chromosome. The genetically centromeric region at 54.6 cM was covered by a minimum tiling path spanning 2.1 Mb with no physical gaps. The precise position of the centromere was revealed by using three overlapping BAC/PACs for ~150 kb. In addition, FISH results revealed uneven chromatin condensation around the centromeric region at the pachytene stage. This map is of use for positional cloning and further characterization of the rice functional genomics. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users. Chia-Hsiung Cheng and Mei-Chu Chung have equal contributions.  相似文献   

8.
Flax (Linum usitatissimum) is an ancient crop that is widely cultivated as a source of fiber, oil and medicinally relevant compounds. To accelerate crop improvement, we performed whole‐genome shotgun sequencing of the nuclear genome of flax. Seven paired‐end libraries ranging in size from 300 bp to 10 kb were sequenced using an Illumina genome analyzer. A de novo assembly, comprised exclusively of deep‐coverage (approximately 94× raw, approximately 69× filtered) short‐sequence reads (44–100 bp), produced a set of scaffolds with N50 = 694 kb, including contigs with N50 = 20.1 kb. The contig assembly contained 302 Mb of non‐redundant sequence representing an estimated 81% genome coverage. Up to 96% of published flax ESTs aligned to the whole‐genome shotgun scaffolds. However, comparisons with independently sequenced BACs and fosmids showed some mis‐assembly of regions at the genome scale. A total of 43 384 protein‐coding genes were predicted in the whole‐genome shotgun assembly, and up to 93% of published flax ESTs, and 86% of A. thaliana genes aligned to these predicted genes, indicating excellent coverage and accuracy at the gene level. Analysis of the synonymous substitution rates (Ks) observed within duplicate gene pairs was consistent with a recent (5–9 MYA) whole‐genome duplication in flax. Within the predicted proteome, we observed enrichment of many conserved domains (Pfam‐A) that may contribute to the unique properties of this crop, including agglutinin proteins. Together these results show that de novo assembly, based solely on whole‐genome shotgun short‐sequence reads, is an efficient means of obtaining nearly complete genome sequence information for some plant species.  相似文献   

9.
The aphid Schlechtendalia chinensis is an economically important insect that can induce horned galls, which are valuable for the medicinal and chemical industries. Up to now, more than twenty aphid genomes have been reported. Most of the sequenced genomes are derived from free‐living aphids. Here, we generated a high‐quality genome assembly from a galling aphid. The final genome assembly is 271.52 Mb, representing one of the smallest sequenced genomes of aphids. The genome assembly is based on contig and scaffold N50 values of the genome sequence are 3.77 Mb and 20.41 Mb, respectively. Nine‐seven percent of the assembled sequences was anchored onto 13 chromosomes. Based on BUSCO analysis, the assembly involved 96.9% of conserved arthropod and 98.5% of the conserved Hemiptera single‐copy orthologous genes. A total of 14,089 protein‐coding genes were predicted. Phylogenetic analysis revealed that S. chinensis diverged from the common ancestor of Eriosoma lanigerum approximately 57 million years ago (MYA). In addition, 35 genes encoding salivary gland proteins showed differentially when S. chinensis forms a gall, suggesting they have potential roles in gall formation and plant defense suppression. Taken together, this high‐quality S. chinensis genome assembly and annotation provide a solid genetic foundation for future research to reveal the mechanism of gall formation and to explore the interaction between aphids and their host plants.  相似文献   

10.
Onychostoma macrolepis is an emerging commercial cyprinid fish species. It is a model system for studies of sexual dimorphism and genome evolution. Here, we report the chromosome‐level assembly of the O.macrolepis genome obtained from the integration of nanopore long‐read sequencing with physical maps produced using Bionano and Hi‐C technology. A total of 87.9 Gb of nanopore sequence provided approximately 100‐fold coverage of the genome. The preliminary genome assembly was 883.2 Mb in size with a contig N50 size of 11.2 Mb. The 969 corrected contigs obtained from Bionano optical mapping were assembled into 853 scaffolds and produced an assembly of 886.5 Mb with a scaffold N50 of 16.5 Mb. Finally, using the Hi‐C data, 881.3 Mb (99.4% of genome) in 526 scaffolds were anchored and oriented in 25 chromosomes ranging in size from 25.27 to 56.49 Mb. In total, 24,770 protein‐coding genes were predicted in the genome, and ~96.85% of the genes were functionally annotated. The annotated assembly contains 93.3% complete genes from the BUSCO reference set. In addition, we identified 409 Mb (46.23% of the genome) of repetitive sequence, and 11,213 non‐coding RNAs, in the genome. Evolutionary analysis revealed that O. macrolepis diverged from common carp approximately 24.25 million years ago. The chromosomes of O. macrolepis showed an unambiguous correspondence to the chromosomes of zebrafish. The high‐quality genome assembled in this work provides a valuable genomic resource for further biological and evolutionary studies of O. macrolepis.  相似文献   

11.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

12.
Recent sequencing of the Brassica rapa and Brassica oleracea genomes revealed extremely contrasting genomic features such as the abundance and distribution of transposable elements between the two genomes. However, whether and how these structural differentiations may have influenced the evolutionary rates of the two genomes since their split from a common ancestor are unknown. Here, we investigated and compared the rates of nucleotide substitution between two long terminal repeats (LTRs) of individual orthologous LTR‐retrotransposons, the rates of synonymous and non‐synonymous substitution among triplicated genes retained in both genomes from a shared whole genome triplication event, and the rates of genetic recombination estimated/deduced by the comparison of physical and genetic distances along chromosomes and ratios of solo LTRs to intact elements. Overall, LTR sequences and genic sequences showed more rapid nucleotide substitution in B. rapa than in B. oleracea. Synonymous substitution of triplicated genes retained from a shared whole genome triplication was detected at higher rates in B. rapa than in B. oleracea. Interestingly, non‐synonymous substitution was observed at lower rates in the former than in the latter, indicating shifted densities of purifying selection between the two genomes. In addition to evolutionary asymmetry, orthologous genes differentially regulated and/or disrupted by transposable elements between the two genomes were also characterized. Our analyses suggest that local genomic and epigenomic features, such as recombination rates and chromatin dynamics reshaped by independent proliferation of transposable elements and elimination between the two genomes, are perhaps partially the causes and partially the outcomes of the observed inter‐specific asymmetric evolution.  相似文献   

13.
Ark shells are commercially important clam species that inhabit in muddy sediments of shallow coasts in East Asia. For a long time, the lack of genome resources has hindered scientific research of ark shells. Here, we report a high-quality chromosome-level genome assembly of Scapharca kagoshimensis, with an aim to unravel the molecular basis of heme biosynthesis, and develop genomic resources for genetic breeding and population genetics in ark shells. Nineteen scaffolds corresponding to 19 chromosomes were constructed from 938 contigs (contig N50 = 2.01 Mb) to produce a final high-quality assembly with a total length of 1.11 Gb and scaffold N50 around 60.64 Mb. The genome assembly represents 93.4% completeness via matching 303 eukaryota core conserved genes. A total of 24,908 protein-coding genes were predicted and 24,551 genes (98.56%) of which were functionally annotated. The enrichment analyses suggested that genes in heme biosynthesis pathways were expanded and positive selection of the haemoglobin genes was also found in the genome of S. kagoshimensis, which gives important insights into the molecular mechanisms and evolution of the heme biosynthesis in mollusca. The valuable genome assembly of Skagoshimensis would provide a solid foundation for investigating the molecular mechanisms that underlie the diverse biological functions and evolutionary adaptations of Skagoshimensis.  相似文献   

14.
The rice leaffolder Cnaphalocrocis exigua (Crambidae, Lepidoptera) is an important agricultural pest that damages rice crops and other members of related grass families. C. exigua exhibits a very similar morphological phenotype and feeding behaviour to C. medinalis, another species of rice leaffolder whose genome was recently reported. However, genomic information for C. exigua remains extremely limited. Here, we used a hybrid strategy combining different sequencing technologies, including Illumina, PacBio, 10× Genomics, and Hi – C scaffolding, to generate a high-quality chromosome-level genome assembly of C. exigua. We initially obtained a 798.8 Mb assembly with a contig N50 size of 2.9 Mb, and the N50 size was subsequently increased to 25.7 Mb using Hi – C technology to anchor 1413 scaffolds to 32 chromosomes. We detected a total of 97.7% Benchmarking Universal Single-Copy Orthologues (BUSCO) in the genome assembly, which was comprised of ~52% repetitive sequence and annotated 14,922 protein-coding genes. Of note, the Z and W sex chromosomes were assembled and identified. A comparative genomic analysis demonstrated that despite the high synteny observed between the two rice leaffolders, the species have distinct genomic features associated with expansion and contraction of gene families and selection pressure. In summary, our chromosome-level genome assembly and comparative genomic analysis of C. exigua provide novel insights into the evolution and ecology of this rice insect pests and offer useful information for pest control.  相似文献   

15.
A hybridization barrier leads to the inability of seed formation after intergeneric crossings between Brassica rapa and Raphanus sativus. Most B. rapa lines cannot set intergeneric hybrid seeds because of embryo breakdown, but a B. rapa line obtained from turnip cultivar ‘Shogoin-kabu’ is able to produce a large number of hybrid seeds as a maternal parent by crossings with R. sativus. In ‘Shogoin-kabu’ crossed with R. sativus, developments of embryos and endosperms were slower than those in intraspecific crossings, but some of them grew to mature seeds without embryo breakdown. Intergeneric hybrid seeds were obtained in a ‘Shogoin-kabu’ line at a rate of 0.13 per pollinated flower, while no hybrid seeds were obtained in a line developed from Chinese cabbage cultivar ‘Chiifu’. F1 hybrid plants between the lines of ‘Shogoin-kabu’ and ‘Chiifu’ set a larger number of hybrid seeds per flower, 0.68, than both the parental lines. Quantitative trait loci (QTLs) for hybrid seed formation were analyzed after intergeneric crossings using two different F2 populations derived from the F1 hybrids, and three QTLs with significant logarithm of odds scores were detected. Among them, two QTLs, i.e., one in linkage group A10 and the other in linkage group A01, were detected in both the F2 populations. These two QTLs had contrary effects on the number of hybrid seeds. Epistatic interaction between these two QTLs was revealed. Possible candidate genes controlling hybrid seed formation ability in QTL regions were inferred using the published B. rapa genome sequences.  相似文献   

16.
The ladybird beetle Propylea japonica is an important natural enemy in agro‐ecological systems. Studies on the strong tolerance of P. japonica to high temperatures and insecticides, and its population and phenotype diversity have recently increased. However, abundant genome resources for obtaining insights into stress‐resistance mechanisms and genetic intra‐species diversity for P. japonica are lacking. Here, we constructed the P. japonica genome maps using Pacific Bioscience (PacBio) and Illumina sequencing technologies. The genome size was 850.90 Mb with a contig N50 of 813.13 kb. The Hi‐C sequence data were used to upgrade draft genome assemblies; 4,777 contigs were assembled to 10 chromosomes; and the final draft genome assembly was 803.93 Mb with a contig N50 of 813.98 kb and a scaffold N50 of 100.34 Mb. Approximately 495.38 Mb of repeated sequences was annotated. The 18,018 protein‐coding genes were predicted, of which 95.78% were functionally annotated, and 1,407 genes were species‐specific. The phylogenetic analysis showed that P. japonica diverged from the ancestor of Anoplophora glabripennis and Tribolium castaneum ~ 236.21 million years ago. We detected that some important gene families involved in detoxification of pesticides and tolerance to heat stress were expanded in P. japonica, especially cytochrome P450 and Hsp70 genes. Overall, the high‐quality draft genome sequence of P. japonica will provide invaluable resource for understanding the molecular mechanisms of stress resistance and will facilitate the research on population genetics, evolution and phylogeny of Coccinellidae. This genome will also provide new avenues for conserving the diversity of predator insects.  相似文献   

17.
18.
In an attempt to unify the genetic and biological research on Mycobacterium leprae, the aetiological agent of leprosy, a cosmid library was constructed and then ordered by a combination of fingerprinting and hybridization techniques. The genome of M. leprae is represented by four contigs of overlapping clones which, together, account for nearly 2.B Mb of DNA. Several arguments suggest that the gaps between the contigs are small in size and that virtually complete coverage of the chromosome has been obtained. All of the cloned M. leprae genes have been positioned on the contig maps together with the 29 copies of the dispersed repetitive element, RLEP. These have been classified into four groups on the basis of differences in their organization. Several key housekeeping genes were identified and mapped by hybridization with heterologous probes, and the current genome map of this uncultivable pathogen comprises 72 loci.  相似文献   

19.
20.
Parasitoid wasps represent a large proportion of hymenopteran species. They have complex evolutionary histories and are important biocontrol agents. To advance parasitoid research, a combination of Illumina short‐read, PacBio long‐read and Hi‐C scaffolding technologies was used to develop a high‐quality chromosome‐level genome assembly for Pteromalus puparum, which is an important pupal endoparasitoid of caterpillar pests. The chromosome‐level assembly has aided in studies of venom and detoxification genes. The assembled genome size is 338 Mb with a contig N50 of 38.7 kb and a scaffold N50 of 1.16 Mb. Hi‐C analysis assembled scaffolds onto five chromosomes and raised the scaffold N50 to 65.8 Mb, with more than 96% of assembled bases located on chromosomes. Gene annotation was assisted by RNA sequencing for the two sexes and four different life stages. Analysis detected 98% of the BUSCO (Benchmarking Universal Single‐Copy Orthologs) gene set, supporting a high‐quality assembly and annotation. In total, 40.1% (135.6 Mb) of the assembly is composed of repetitive sequences, and 14,946 protein‐coding genes were identified. Although venom genes play important roles in parasitoid biology, their spatial distribution on chromosomes was poorly understood. Mapping has revealed venom gene tandem arrays for serine proteases, pancreatic lipase‐related proteins and kynurenine–oxoglutarate transaminases, which have amplified in the P. puparum lineage after divergence from its common ancestor with Nasonia vitripennis. In addition, there is a large expansion of P450 genes in P. puparum. These examples illustrate how chromosome‐level genome assembly can provide a valuable resource for molecular, evolutionary and biocontrol studies of parasitoid wasps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号