首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The seasonal variability in the extraction yield, physicochemical characteristics, and rheological properties of ulvan from two Ulva species contributing to Brittany “green tides” has been studied. These seaweeds were collected in the water column for Ulva armoricana Dion, de Reviers et Coat and on hard substrata for Ulva rotundata Bliding. The maximum ulvan extraction efficiency was not related to the maximum ulvan content in the seaweeds, but with the active growth period of the seaweeds. Ulvan chemical structure, macromolecular characteristics, and rheological properties were affected by both species and seasons. The proportion of high‐molecular‐weight ulvan was the major factor positively correlated with the gelling properties. Characteristics of ulvan from U. rotundata subjected to tides were more affected by seasons than ulvan from U. armoricana living in a more constant environment. These results point to several useful recommendations concerning Ulva sp. biomass collected with regard to ulvan characteristics and uses.  相似文献   

2.
The green algal genus Ulva includes a speciose group of marine macroalgae inhabiting shallow seas worldwide. Although algal blooms in Asia highlight the opportunistic nature of several “nuisance” species, recent research clearly reveals important positive benefits of Ulva. Applied research requires accurate, reliable, and rapid identification, however, identification of Ulva spp. has met with con‐siderable difficulty. Consequently, many have turned to molecular markers to aid in taxonomy. Previous studies of plants and algae have relied heavily on ITS and rbcL. Recently, tufA has been presented as a suitable barcoding gene to facilitate species‐level identification of green macroalgae and it is used here to explore the diversity of Ulva spp. in temperate Australia. Ninety Ulva specimens collected from 38 sites across five states were sequenced for this gene region with exemplars from each genetic group also sequenced for rbcL to test for congruence. Collections of Australian Ulva spp. were compared to samples from Asia and North America and exhibited trends consistent with recent studies in terms of species relationships. Results support an overwhelmingly cosmopolitan flora in temperate Australia that contrasts with other Australasian surveys of Ulva that report a greater number of endemics and new species. Four new records, as well as numerous range extensions for taxa already known from the country, are documented. Evidence for three nonindigenous Ulva species in temperate Australia is discussed.  相似文献   

3.
Many studies have documented habitat cascades where two co‐occurring habitat‐forming species control biodiversity. However, more than two habitat‐formers could theoretically co‐occur. We here documented a sixth‐level habitat cascade from the Avon‐Heathcote Estuary, New Zealand, by correlating counts of attached inhabitants to the size and accumulated biomass of their biogenic hosts. These data revealed predictable sequences of habitat‐formation (=attachment space). First, the bivalve Austrovenus provided habitat for green seaweeds (Ulva) that provided habitat for trochid snails in a typical estuarine habitat cascade. However, the trochids also provided habitat for the nonnative bryozoan Conopeum that provided habitat for the red seaweed Gigartina that provided habitat for more trochids, thereby resetting the sequence of the habitat cascade, theoretically in perpetuity. Austrovenus is here the basal habitat‐former that controls this “long” cascade. The strength of facilitation increased with seaweed frond size, accumulated seaweed biomass, accumulated shell biomass but less with shell size. We also found that Ulva attached to all habitat‐formers, trochids attached to Ulva and Gigartina, and Conopeum and Gigartina predominately attached to trochids. These “affinities” for different habitat‐forming species probably reflect species‐specific traits of juveniles and adults. Finally, manipulative experiments confirmed that the amount of seaweed and trochids was important and consistent regulators of the habitat cascade in different estuarine environments. We also interpreted this cascade as a habitat‐formation network that describes the likelihood of an inhabitant being found attached to a specific habitat‐former. We conclude that the strength of the cascade increased with the amount of higher‐order habitat‐formers, with differences in form and function between higher and lower‐order habitat‐formers, and with the affinity of inhabitants for higher‐order habitat‐formers. We suggest that long habitat cascades are common where species traits allow for physical attachment to other species, such as in marine benthic systems and old forest.  相似文献   

4.
Seaweed protoplasts: status,biotechnological perspectives and needs   总被引:3,自引:0,他引:3  
Protoplasts are living plant cells without cell walls which offer a unique uniform single cell system that facilitates several aspects of modern biotechnology, including genetic transformation and metabolic engineering. Extraction of cell wall lytic enzymes from different phycophages and microbial sources has greatly improved protoplast isolation and their yield from a number of anatomically more complex species of brown and red seaweeds which earlier remained recalcitrant. Recently, recombinant cell wall lytic enzymes were also produced and evaluated with native ones for their potential abilities in producing viable protoplasts from Laminaria. Reliable procedures are now available to isolate and culture protoplasts from diverse groups of seaweeds. To date, there are 89 species belonging to 36 genera of green, red and brown seaweeds from which successful protoplast isolation and regeneration has been reported. Of the total species studied for protoplasts, most belonged to Rhodophyta with 41 species (13 genera) followed by Chlorophyta and Phaeophyta with 24 species each belonging to 5 and 18 genera, respectively. Regeneration of protoplast-to-plant system is available for a large number of species, with extensive literature relating to their culture methods and morphogenesis. In the context of plant genetic manipulation, somatic hybridization by protoplast fusion has been accomplished in a number of economically important species with various levels of success. Protoplasts have also been used for studying foreign gene expression in Porphyra and Ulva. Isolated protoplasts are also exploited in numerous miscellaneous studies involving membrane function, cell structure, bio-chemical synthesis of cell walls etc. This article briefly reviews the status of various developments in seaweed protoplasts research and their potentials in genetic improvement of seaweeds, along with needs that must to be fulfilled for effective realization of the objectives envisaged for protoplast research.  相似文献   

5.
The green macroalgal genus Ulva (incl. Entemmorpha) contains economically valuable species, is of relevance for coastal management (green tides), and certain taxa serve as experimental organisms for fundamental research in green algae. The nuclear genome size of Ulva (Entemmorpha) compressa Linnaeus was measured in propidium iodide stained nuclei using laser scanning cytometry. Nuclei of fixed gametes yielded reproducible values, whereas nuclei extracted from multicellular gametophytes were unsuitable. With nuclei of Arabidopsis thaliana (L.) Heynh and Saccharomyces cerevisiae Hansen as references, the haploid nuclear genome size of U. compressa was calculated as 135 ± 7 Mbp. This is the smallest genome so far known from any species of Ulva.  相似文献   

6.
Sequences of the nuclear internal transcribed spacer 1 (ITS1) region and the chloroplast rbcL gene were obtained from 86 specimens of Ulva (including “Enteromorpha”) from five of the main Hawaiian Islands. These 86 specimens were divided into 11 operational taxonomic units (OTUs) based on analyses of primary sequence data and comparisons of ITS1 secondary structure. Of the 11 OTUs, six have not previously been reported from anywhere in the world. Only three represented exact sequence matches to named species (Ulva lactuca L., syn. U. fasciata Delile; U. ohnoi Hiraoka et Shimada); two others represented exact sequence matches to unnamed species from Japan and New Zealand. Of the 12 species names currently in use for Hawaiian Ulva, only one, U. lactuca (as U. fasciata), was substantiated. General morphology of the specimens did not always correspond with molecular OTUs; for example, reticulate thallus morphology, previously considered diagnostic for the species U. reticulata Forssk., was expressed in thalli assigned to U. ohnoi and to one of the novel OTUs. This finding confirms a number of recent studies and provides further support for a molecular species concept for Ulva. These results suggest that Ulva populations in tropical and subtropical regions consist of species that are largely unique to these areas, for which the application of names based on types from temperate and boreal European and North American waters is inappropriate. Ulva ohnoi, a “green tide” species, is reported from Hawaii for the first time.  相似文献   

7.
Macroalgae contribute approximately 15% of the primary productivity in coastal marine ecosystems, fix up to 27.4 Tg of carbon per year, and provide important structural components for life in coastal waters. Despite this ecological and commercial importance, direct measurements and comparisons of the short‐term responses to elevated pCO2 in seaweeds with different life‐history strategies are scarce. Here, we cultured several seaweed species (bloom forming/nonbloom forming/perennial/annual) in the laboratory, in tanks in an indoor mesocosm facility, and in coastal mesocosms under pCO2 levels ranging from 400 to 2,000 μatm. We find that, across all scales of the experimental setup, ephemeral species of the genus Ulva increase their photosynthesis and growth rates in response to elevated pCO2 the most, whereas longer‐lived perennial species show a smaller increase or a decrease. These differences in short‐term growth and photosynthesis rates are likely to give bloom‐forming green seaweeds a competitive advantage in mixed communities, and our results thus suggest that coastal seaweed assemblages in eutrophic waters may undergo an initial shift toward communities dominated by bloom‐forming, short‐lived seaweeds.  相似文献   

8.
Ulva and Enteromorpha as indicators of heavy metal pollution   总被引:1,自引:0,他引:1  
We studied the use of two genera of green macroalgae, Ulva and Enteromorpha, as indicators of heavy metal contamination on the northwest coast of Spain. We evaluated the extent of external contamination by fine particles adhering to the algal thallus and found that although not a problem in Ulva, it may be in Enteromorpha samples. The mean levels of metals in both seaweeds were in accordance with previously reported levels in different species of the genera in clean areas. A large number of significant correlations between levels of metals in macroalgae and in sediment (for both the total and labile fractions) were found. However, almost all of the coefficients of correlation decreased after geochemical normalization of sediment metal concentrations.  相似文献   

9.
The use of different seaweeds such as Sargassum sp., Turbinaria conoides, and Ulva sp. in removing mercury(II) from aqueous solutions were investigated. The initial experimental runs, conducted at different equilibrium pH conditions, demonstrated that brown seaweeds outperformed green seaweed in Hg(II) biosorption at all pH conditions. In particular, at pH 5, maximum biosorption capacities of 170.3 and 145.8 mg/g were recorded for the brown seaweeds T. conoides and Sargassum sp., respectively, compared with 138.4 mg/g for the green seaweed Ulva sp. Isotherm data were modeled and interpreted using the Langmuir, Freundlich, Redlich-Peterson, and Toth models, with the latter described the Hg(II) isotherms with high correlation coefficients and low % error values. The kinetic data indicate the rapidity of the biosorption process, with the equilibrium achieved within 90 min. Several models, including the Elovich, pseudo-first-order, and pseudo-second-order models, were examined for their suitability with the present data; the correlation coefficient and % error values, along with better prediction of equilibrium uptake values, favored the pseudo-first-order model. The desorption experiments were highly successful for T. conoides biomass with 0.05 M HCl, whereas for the other two seaweeds, 0.05 M HCl resulted in high biomass weight loss. Reusing T. conoides biomass in three successive sorption-desorption cycles resulted in only 8.8% reduction in Hg(II) biosorption capacity compared with its original uptake.  相似文献   

10.
Foliose Ulva spp. have become increasingly important worldwide for their environmental and financial impacts. A large number of such Ulva species have rapid reproduction and proliferation habits, which explains why they are responsible for Ulva blooms, known as “green tides”, having dramatic negative effects on coastal ecosystems, but also making them attractive for aquaculture applications. Despite the increasing interest in the genus Ulva, particularly on the larger foliose species for aquaculture, their inter‐ and intra‐specific genetic diversity is still poorly described. We compared the cytoplasmic genome (chloroplast and mitochondrion) of 110 strains of large distromatic foliose Ulva from Ireland, Brittany (France), the Netherlands and Portugal. We found six different species, with high levels of inter‐specific genetic diversity, despite highly similar or overlapping morphologies. Genetic variation was as high as 82 SNPs/kb between Ulva pseudorotundata and U. laetevirens, indicating considerable genetic diversity. On the other hand, intra‐specific genetic diversity was relatively low, with only 36 variant sites (0.03 SNPs/kb) in the mitochondrial genome of the 29 Ulva rigida individuals found in this study, despite different geographical origins. The use of next‐generation sequencing allowed for the detection of a single inter‐species hybrid between two genetically closely related species, U. laetevirens, and U. rigida, among the 110 strains analyzed in this study. Altogether, this study represents an important advance in our understanding of Ulva biology and provides genetic information for genomic selection of large foliose strains in aquaculture.  相似文献   

11.
Although the green seaweed Ulva is one of the most common seaweeds in the coastal regions with well-studied ecological characteristics, few reverse genetic technologies have been developed for it. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is a simple genome-editing technology based on a ribonucleoprotein (RNP) complex composed of an endonuclease and programmable RNA to target particular DNA sequences. Genome editing makes it possible to generate mutations on a target gene in non-model organisms without established transgenic technologies. In this study, we applied the CRISPR-Cas9 RNP genome-editing system to the green seaweed Ulva prolifera, using polyethylene glycol (PEG)-mediated transfection. Our experimental system disrupts a single gene (UpAPT) encoding adenine phosphoribosyl transferase (APT) and generates a resistant phenotype for gametophytes cultured in a medium with toxic compound 2-fluoroadenine. The PEG-mediated transfection used for gametes resulted in 2-fluoroadenine-resistant strains containing short indels or substitutions on UpAPT. Our results showed that the CRISPR-Cas9 system with PEG-mediated transfection was efficient for genome editing in Ulva.  相似文献   

12.
Svirski  E.  Beer  S.  Friedlander  M. 《Hydrobiologia》1993,(1):391-396
Ulva cf. lactuca has been a disturbing competitor of experimental Gracilaria conferta outdoor cultures in Israel. The effect of environmental conditions on the competitive ability of Ulva versus Gracilaria, and the main limiting factors for which these seaweeds compete, were studied here. Single and biculture experiments of both seaweeds showed that Ulva outgrew and damaged Gracilaria under all irradiance and temperature combinations. The higher competitive ability of Ulva cf. lactuca in bicultures was not a result of responses to shading or nitrogen shortage, but rather to a shortage of available inorganic carbon, an increase in pH and apparent excretions of Ulva which inhibited the growth of Gracilaria.  相似文献   

13.
14.
Edible seaweeds have not been thoroughly explored for food, medicinal, or industrial purposes in the United States. This study compared selected proximate constituents of three edible seaweed species (Ulva lactuca L., Fucus vesiculosus L., and Gracilaria tikvahiae McLachan) at two sites for possible future development as a food crop on the Delmarva Peninsula. Sampling was conducted bimonthly at Chincoteague Memorial Park, Virginia, and Indian River Inlet, Delaware, from 2005 to 2008. Proximate constituents of moisture, ash, dietary fiber, proteins, and fat were measured seasonally and calorific values were calculated. Data were analyzed using correlation, paired samples t‐tests and one‐ and two‐way ANOVA. Significant variations in the proximate constituents were found among seasons, species, and between sites. The brown seaweed (Fucus) at both sites had higher fiber, fat, and ash (mineral) content than the green (Ulva) or the red (Gracilaria). Ulva and Gracilaria had higher protein content than Fucus. Seaweeds from Delaware had more fat, ash, and protein than from Virginia, potentially because of the more polluted, nutrient rich environment at the Delaware site. Positive correlations between seaweed fat and protein content may indicate an increase in the synthesis of both components under optimal growth conditions. Species' physiology differences and the water quality at the two sites likely impacted proximate constituent values. This study contributed new information to the existing body of knowledge in the areas of nutrition and ecology of seaweeds and their potential as a cash crop.  相似文献   

15.
In order to elucidate the species composition of free‐floating Ulva that cause green tide in several bays in Japan, and to clarify the generic status of Ulva and Enteromorpha (Ulvales, Ulvophyceae), the nuclear encoded internal transcribed spacer (ITS) region including the 5.8S gene and the plastid encoded large subunit of ribulose‐1, 5‐bisphosphate carboxylase/ oxgenase (rbcL) gene sequences for 15 species were determined. Both ITS and rbcL analyses indicate that free‐floating Ulva samples are divided into four different lineages that correspond to Ulva lactuca Linnaeus, U. pertusa Kjellman, U. armoricana Dion etal. and U. fasciata Delile. These four species are distinguished by cell morphology including the arrangement of cells, the shape and size of cells and the position of chloroplasts. Molecular data also indicated that Ulva and Enteromorpha are not separated as respective monophyletic groups within a large monophyletic clade and congeneric as shown by previous molecular studies using the ITS sequences alone. This strongly suggests that these genera are congeneric and Enteromorpha should be reduced to the synonym of Ulva.  相似文献   

16.
17.
Intertidal Ulva mats occur annually in winter and spring in the Xiangshan Bay (29°26′–29°34′ N, 121°27′–121°50′ E) of China. Thousands of tons of Ulva biomass have been harvested as edible seaweeds for human consumption for several decades in this region. This investigation was designed to quantify Ulva microscopic propagules associated with the mat, identify species composition, and to analyze intra-species relationships using three molecular markers. Phylogenetic analysis based on the nuclear encoded rDNA internal transcribed spacer region, the plastid encoded large subunit of the ribulose 1,5-bisphosphate carboxylase gene, and the 5S rDNA spacer region showed that the mat was principally composed of Ulva prolifera and Ulva flexuosa. Their propagules were detected in both the water column and sediment. Based on phylogenetic analyses of the 5S rDNA spacer region, mat samples of U. prolifera and U. flexuosa were genetically distinct from the green tide samples in the Yellow Sea and U. flexuosa samples from Jiangsu coasts, respectively, revealing that isolated geographical position of the Xiangshan Bay might result in the maintenance of a distinct Ulva population. The results demonstrate that high-resolution DNA markers have great potential in identification and discrimination at and below the species level.  相似文献   

18.
Cosmopolitan species of the genus Ulva (Ulvaceae; Chlorophyta) that populate the littoral zone of marine habitats constitute a staple diet for a variety of organisms, particularly snails, shellfish, polychaetes, and birds. Occurrence of Ulva species (e.g., U. flexuosa and U . prolifera) has also been observed in freshwater inland ecosystems that have no contact with saline water. However, the influence of the development of macroalgal mats of Ulva on indigenous organisms in limnic ecosystems has not been established. This study investigates the trophic relationships between Ulva flexuosa and one species of snail from freshwater habitats in central Europe. During the summer, the great pond snail (Lymnaea stagnalis) consumed Ulva as a source of nutrition even when other algae and plants were available. Lymnaea stagnalis consumed an average of 100 mg of Ulva thalli per day. This level of biomass exceeded the consumption of an alternative food source, the shoots of Elodea canadensis. Ulva thalli are more actively consumed by great pond snails than Elodea shoots, and this is expressed in terms of the differences of biomass consumption. It was also observed that the interior of the monostromatic tubular thalli of Ulva flexuosa serves as a protective shelter for juvenile great pond snails.  相似文献   

19.
Species of Ulva have a wide range of commercial applications and are increasingly being recognized as promising candidates for integrated aquaculture. In South Africa, Ulva has been commercially cultivated in integrated seaweed-abalone aquaculture farms since 2002, with more than 2000 tonnes of biomass cultivated per annum in land-based paddle raceways. However, the identity of the species of Ulva grown on these farms remains uncertain. We therefore characterized samples of Ulva cultivated in five integrated multi-trophic aquaculture farms (IMTA) across a wide geographical range and compared them with foliose Ulva specimens from neighboring seashores. The molecular markers employed for this study were the chloroplast-encoded Ribulose-1,5-bisphosphate carboxylase oxygenase (rbcL), the Internal Transcribed Spacer (ITS) of the nuclear, and the chloroplast elongation factor tufA. All currently cultivated specimens of Ulva were molecularly resolved as a single species, U. lacinulata. The same species has been cultivated for over a decade, although a few specimens of two other species were also present in early South African IMTA systems. The name Ulva uncialis is adopted for the Ulva “Species A” by Fort et al. (2021), Molecular Ecology Resources, 22, 86) significantly extending the distribution range for this species. A comparison with wild Ulva on seashores close to the farms resulted in five new distribution records for South Africa (U. lacinulata, U. ohnoi, U. australis, U. stenophylloides, and U. aragoënsis), the first report of a foliose form of U. compressa in the region, and one new distribution record for Namibia (U. australis). This study reiterates the need for DNA confirmation, especially when identifying morphologically simple macroalgae with potential commercial applications.  相似文献   

20.
A phylogenetic and morphological study of green algae resembling Ulva conglobata from Japan was undertaken, along with morphological observations of the original material of U. conglobata Kjellman. The samples resembling U. conglobata included five genetically distinct species: U. fasciata, U. pertusa, U. tanneri, Ulva sp. 1 and Ulva sp. 2. The discovery of marginal denticulations in some of the original material of U. conglobata, made it possible to distinguish those species without denticulations: U. pertusa, U. tanneri and Ulva sp. 2. The morphological characteristics of Ulva sp. 1 matched those of U. conglobata, but Ulva sp. 1 was not clearly identified as U. conglobata owing to the lack of DNA sequence data of the original material. Ulva sp. 2 had lobes adhering to each other by rhizoids. This morphological feature is stable in Ulva sp. 2 and unique among Ulva species. In conjunction with the molecular data, Ulva sp. 2 was described as a new species, U. adhaerens sp. nov. This species features rhizoidal extensions in regions other than the base and an elaborate arrangement of the extensions used for adhesion. It thereby expands our knowledge of the morphogenesis of the morphologically simple genus Ulva.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号