首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemB gene of Escherichia coli has been identified as a hot spot for the insertion of the transposable element IS2. The insertional specificity of IS2 is still unclear. This study reports on the attempt to sequence a statistically significant number of insertions in hemB, in order to determine whether there might be a basis for future studies to determine a molecular basis of IS2 insertional specificity. The results indicate that IS2 inserts in a non-random manner into a 240 bp segment at the 5′ end of the gene (region I). Twenty-one of 24 insertions occurred in region I. Three insertions have been identified in the two middle 250 bp segments of the 975 bp gene, and none in the 3′ terminal segment. A seventeen bp sequence showing 88.2% identity with a segment of IS2, 221 bp from the 3′ terminus has been identified in region I. Four instances of repeated insertion between the same pair of nucleotides have been observed at four different sites.  相似文献   

2.
Helitron是一种广泛存在于真核生物中的可移动遗传元件。与其他转座子不同,自主Helitron元件可编码具有复制引发(Rep)和解旋酶(Hel)结构域的转座酶,并通过滚环复制的方式在基因组中进行扩张。本研究对9种尖孢镰刀菌中的自主Helitron元件进行系统分析,结果表明尖孢镰刀菌中存在两类自主Helitron元件FoHeli1FoHeli2。其中FoHeli1成员间序列高度相似,并具有明晰的边界特征:3’端为保守的“TATTTT”序列,其上游可形成稳定的发夹结构,且发夹上游可与5’端形成12bp的反向互补结构。基于上述分析结果,从尖孢镰刀菌Fo4287菌株中克隆获得完整的FoHeli1元件,并通过构建双元转座系统及PEG介导的原生质体转化,证明尖孢镰刀菌中的FoHeli元件可在禾谷镰刀菌PH-1菌株的基因组中发生跳转。  相似文献   

3.
Transposable elements are ubiquitous in all organisms and represent a dynamic component of their genomes, causing mutations and thereby genetic variation. Because of their independent and expansive replication strategy, these elements are called selfish and were thought to have no impact on the adaptive evolution of their host organisms. Although most TE-induced mutations seem to exert only negative effects on the fitness of their carrier, recent evidence indicates that in the course of evolution at least some TE-mediated changes have become established features of the host genome. For example, the insertion of TEs may provide novel cis-regulatory regions to preexisting host genes or TE-derived trans-acting factors may undergo a molecular transition into novel host genes through a process described as molecular domestication. The stationary P element related gene clusters of D. guanche, D. madeirensis and D. subobscura provide an excellent model system to study the evolutionary impact of TEs on genome evolution. Each cluster unit consists of a cis-regulating section composed of different insertion sequences followed by the first three exons of a P element that are coding for a 66 kDa ‘repressor-like’ protein. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
    
Although many mathematical models exist predicting the dynamics of transposable elements (TEs), there is a lack of available empirical data to validate these models and inherent assumptions. Genomes can provide a snapshot of several TE families in a single organism, and these could have their demographics inferred by coalescent analysis, allowing for the testing of theories on TE amplification dynamics. Using the available genomes of the mosquitoes Aedes aegypti and Anopheles gambiae, we indicate that such an approach is feasible. Our analysis follows four steps: (1) mining the two mosquito genomes currently available in search of TE families; (2) fitting, to selected families found in (1), a phylogeny tree under the general time‐reversible (GTR) nucleotide substitution model with an uncorrelated lognormal (UCLN) relaxed clock and a nonparametric demographic model; (3) fitting a nonparametric coalescent model to the tree generated in (2); and (4) fitting parametric models motivated by ecological theories to the curve generated in (3).  相似文献   

5.
The maintenance of mobile DNA sequences in clonal organisms has been seen as a paradox. If selfish mobile sequences spread through genomes only by overreplication in transposition, then sexuality is necessary for their spread through populations. The persistence of bacterial transposable elements without obvious dominant selectable markers has previously been explained by horizontal transfer. However, advantageous insertions of mobile DNAs are known in bacteria. Here we model maintenance of an otherwise selfish mobile DNA element in a clonal species in which selection for null mutations occurs during one of two temporally alternating environments. Large areas of parameter space permit maintenance of mobile DNAs where, without selection, they would have gone extinct. Horizontal transfer diminishes, rather than enhances, mean copy number. In finite populations, effective population sizes are greatly reduced by selective sweeps, and mean copy number can be increased as the reduced variance in copy number results in reduced selection.  相似文献   

6.
Experimental data suggest that the P transposable element has invaded the Drosophila melanogaster genome after a horizontal transfer from the phylogenetically distant species Drosophila willistoni. The differences between P element phylogeny and that of the Drosophila genus could in part be explained by horizontal transfers. In vivo experiments show that P elements are able to transpose in the genomes of other Drosophila species. This suggests that horizontal transmission of P elements could have taken place in many species of this genus. The regulation, transposition, and deleterious effects of the P element in D. melanogaster were formalized and integrated in a global model to produce a simulation program that simulates a P element invasion. The simulations show that our knowledge of the P element in D. melanogaster can explain its behavior in the Drosophila genus. The equilibrium state of the invaded population of a new species depends on its ability to repair damage caused by P element activity. If repair is efficient, the equilibrium state tends to be of the P type state, in which case the element could subsequently invade other populations of the species. Conversely, the equilibrium state is of the M′ type state when the ability to repair damage is low. The invasion of the P element into other populations of this new species can then only occur by genetic drift and it is likely to be lost. The success of a P element invasion into a new species thus greatly depends on its ability to produce dysgenic crosses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
    
In addition to the strong divergent evolution and significant and episodic evolutionary transitions and speciation we previously attributed to TE‐Thrust, we have expanded the hypothesis to more fully account for the contribution of viruses to TE‐Thrust and evolution. The concept of symbiosis and holobiontic genomes is acknowledged, with particular emphasis placed on the creativity potential of the union of retroviral genomes with vertebrate genomes. Further expansions of the TE‐Thrust hypothesis are proposed regarding a fuller account of horizontal transfer of TEs, the life cycle of TEs, and also, in the case of a mammalian innovation, the contributions of retroviruses to the functions of the placenta. The possibility of drift by TE families within isolated demes or disjunct populations, is acknowledged, and in addition, we suggest the possibility of horizontal transposon transfer into such subpopulations. “Adaptive potential” and “evolutionary potential” are proposed as the extremes of a continuum of “intra‐genomic potential” due to TE‐Thrust. Specific data is given, indicating “adaptive potential” being realized with regard to insecticide resistance, and other insect adaptations. In this regard, there is agreement between TE‐Thrust and the concept of adaptation by a change in allele frequencies. Evidence on the realization of “evolutionary potential” is also presented, which is compatible with the known differential survivals, and radiations of lineages. Collectively, these data further suggest the possibility, or likelihood, of punctuated episodes of speciation events and evolutionary transitions, coinciding with, and heavily underpinned by, intermittent bursts of TE activity.  相似文献   

8.
A new insertion sequence element designated ISLdl1 has been isolated and characterized from Lactobacillus delbrueckii subsp. lactis ATCC 15808. It is the first IS element of L. delbrueckii subsp. lactis described. ISLdl1 is a 1508 bp element flanked by 26 bp imperfect inverted repeats, and generates an 8 bp AT-rich target duplication upon insertion. It contains one ORF encoding a protein of 455 amino acids. This protein shows significant homology to the transposases of the ISL3 family and to other bacterial transposases and putative transposases, and no homology to other proteins. Based on these structural features, ISLdl1 belongs to the ISL3 family. ISLdl1 is present in about 10-12 copies in the genome of ATCC 15808 based on Southern hybridization analysis. Location sites of eight ISLdl1 copies have been determined in more detail by cloning and sequencing one or both of the flanking regions of each ISLdl1 copy. ISLdl1 or ISLdl1-like IS elements were found exclusively in Lactobacillus delbrueckii species and in all strains of subsp. lactis tested. The nucleotide sequence of ISLdl1 is deposited under the accession number AJ302652.  相似文献   

9.
MTTEs (Miniature inverted-repeat transposabie elements) are reminiscence ot non-autonomous DNA (class Ⅱ) elements, which are distinguished from other transposable elements by their small size, short terminal inverted repeats (TIRs), high copy numbers, genie preference, and DNA sequence identity among family members. Although MITEs were first discovered in plants and still actively reshaping genomes, they have been isolated from a wide range of eukaryotic organisms. MITEs can be divided into Tourist-like, Stowaway-like, and pogo-like groups, according to similarities of their TIRs and TSDs (target site duplications). In despite of several models to explain the origin and amplification of MITEs, their mechanisms of transposition and accumulation in eukaryotic genomes remain poorly understood owing to insufficient experimental data. The unique properties of MITEs have been exploited as useful genetic tools for plant genome analysis. Utilization of MITEs as effective and informative genomic markers and pot  相似文献   

10.
11.
    
Transposable elements (TEs) are self-replicating genetic sequences and are often described as important ‘drivers of evolution’. This driving force is because TEs promote genomic novelty by enabling rearrangement, and through exaptation as coding and regulatory elements. However, most TE insertions potentially lead to neutral or harmful outcomes, therefore host genomes have evolved machinery to suppress TE expansion. Through horizontal transposon transfer (HTT) TEs can colonize new genomes, and since new hosts may not be able to regulate subsequent replication, these TEs may proliferate rapidly. Here, we describe HTT of the Harbinger-Snek DNA transposon into sea kraits (Laticauda), and its subsequent explosive expansion within Laticauda genomes. This HTT occurred following the divergence of Laticauda from terrestrial Australian elapids approximately 15–25 Mya. This has resulted in numerous insertions into introns and regulatory regions, with some insertions into exons which appear to have altered UTRs or added sequence to coding exons. Harbinger-Snek has rapidly expanded to make up 8–12% of Laticauda spp. genomes; this is the fastest known expansion of TEs in amniotes following HTT. Genomic changes caused by this rapid expansion may have contributed to adaptation to the amphibious-marine habitat.  相似文献   

12.
果蝇P转座因子的研究进展   总被引:2,自引:0,他引:2  
解生勇 《遗传》2000,22(6):437-440
果蝇P因子是DNA转座子,在近几十年里受到很大关注。可用于确认有关基因,克隆基因以及安置基因回到基因组。P因子的高易动性及其保持和对内部序列强烈的修饰作用也是P因子的本质特征。P因子的另一重要用途是用于产生转基因果蝇。目的基因置于质粒内P因子中可在转座酶的作用下插入前胚盘胚。携带目的基因的P因子可从质粒转座到任意染色体上。据报道,在典型实验中,插入可育果蝇的10%~20%可产生转化体后裔。但是以这种可动DNA片段作为载体尚存在转移基因的不稳定性及与内源跳跃基因的相互影响。本文介绍了果蝇P转座因子的一些研究进展。这些因子的遗传可动性也使它们适用于建造载体产生转基因生物。若如此,载体导入外源基因组的遗传稳定性问题将是一个重要课题。Abstract:P elements in D.melanogaster are DNA transposons and received greater attention within the last few decades.P elements are used for identifying genes of interest,for cloning them,and for placing them back into the genome.The high mobility of P elements and their retention of this mobility and drastic modiffications to their internal sequences are also essential features.Another most important use of P elements is that of making transgenic flies.Desired gene is placed between P-element ends,usually within a plasmid,and injected into preblastoderm embryos in the presence of transposase.This P element then transposes from the plasmid to a random chromosomal site.Reported in a typical experiment,10%~20% of the fertile injected flies produce transformant progeny.But the instability of the transferred gene carried on a piece of mobile DNA as a vector and its interaction with endogenous jumping genes.This paper introduced the studies advances of P transposable element in Drosophila.The genetic mobility of these elements can also make them suitable for the construction of vectors to create transgenic organisms.If so,the genetic stability of the vectors introduced to a foreign genome should be a important subject.  相似文献   

13.
张阁  黄原 《生命科学》2010,22(9):896-900
插入和缺失(insertion and deletion)是DNA和蛋白质在进化过程中发生的序列长度上的改变,由于缺乏祖先序列的信息,不能肯定其到底是插入事件还是缺失事件,故统称之为增减(indel)。indel是分子水平进化变异的主要来源之一,近年来对这种进化事件的研究已经涵盖了其发生频率、大小、分布模式、序列进化模型及应用等各个方面。该文总结了基因组水平上插入和缺失的研究进展和发生机制;介绍了已经提出的插入和缺失进化模型,包括TKF91、TKF92、Long Indel模型和序列环境模型;讨论了插入和缺失作为分子标记在分子进化、基因分型和药物设计等方面的应用。  相似文献   

14.
Transposable elements and the evolution of genome size in eukaryotes   总被引:30,自引:2,他引:30  
Kidwell MG 《Genetica》2002,115(1):49-63
It is generally accepted that the wide variation in genome size observed among eukaryotic species is more closely correlated with the amount of repetitive DNA than with the number of coding genes. Major types of repetitive DNA include transposable elements, satellite DNAs, simple sequences and tandem repeats, but reliable estimates of the relative contributions of these various types to total genome size have been hard to obtain. With the advent of genome sequencing, such information is starting to become available, but no firm conclusions can yet be made from the limited data currently available. Here, the ways in which transposable elements contribute both directly and indirectly to genome size variation are explored. Limited evidence is provided to support the existence of an approximately linear relationship between total transposable element DNA and genome size. Copy numbers per family are low and globally constrained in small genomes, but vary widely in large genomes. Thus, the partial release of transposable element copy number constraints appears to be a major characteristic of large genomes.  相似文献   

15.
    
A 454 sequencing snapshot was utilised to investigate the genome composition and nucleotide diversity of transposable elements (TEs) for several Triticeae taxa, including Triticum aestivum, Hordeum vulgare, Hordeum spontaneum and Secale cereale together with relatives of the A, B and D genome donors of wheat, Triticum urartu (A), Aegilops speltoides (S) and Aegilops tauschii (D). Additional taxa containing the A genome, Triticum monococcum and its wild relative Triticum boeoticum, were also included. The main focus of the analysis was on the genomic composition of TEs as these make up at least 80% of the overall genome content. Although more than 200 TE families were identified in each species, approximately 50% of the overall genome comprised 12–15 TE families. The BARE1 element was the largest contributor to all genomes, contributing more than 10% to the overall genome. We also found that several TE families differ strongly in their abundance between species, indicating that TE families can thrive extremely successfully in one species while going virtually extinct in another. Additionally, the nucleotide diversity of BARE1 populations within individual genomes was measured. Interestingly, the nucleotide diversity in the domesticated barley H. vulgare cv. Barke was found to be twice as high as in its wild progenitor H. spontaneum, suggesting that the domesticated barley gained nucleotide diversity from the addition of different genotypes during the domestication and breeding process. In the rye/wheat lineage, sequence diversity of BARE1 elements was generally higher, suggesting that factors such as geographical distribution and mating systems might play a role in intragenomic TE diversity.  相似文献   

16.
Wright SI  Schoen DJ 《Genetica》1999,107(1-3):139-148
The selfish DNA hypothesis predicts that natural selection is responsible for preventing the unregulated build up of transposable elements in organismal genomes. Accordingly, between-species differences in the strength and effectiveness of selection against transposons should be important in driving the evolution of transposon activity and abundance. We used a modeling approach to investigate how the rate of self-fertilization influences the population dynamics of transposable elements. Contrasting effects of the breeding system were observed under selection based on transposon disruption of gene function versus selection based on element-mediated ectopic exchange. This suggests that the comparison of TE copy number in organisms with different breeding systems may provide a test of the relative importance of these forces in regulating transposon multiplication. The effects of breeding system also interacted with population size, particularly when there was no element excision. The strength and effectiveness of selection against transposons was reflected not only in their equilibrium abundance, but also in the per-site element frequency of individual insertions and the coefficient of variation in copy number. These results are discussed in relation to evidence on transposon abundance available from the literature, and suggestions for future data collection. With their immense variety of breeding systems,plants will be extremely important for comparative studies and for sorting out the forces influencing...variation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We present a global analysis of the distribution of 43 transposable elements (TEs) in 228 species of the Drosophila genus from our data and data from the literature. Data on chromosome localization come from in situ hybridization and presence/absence of the elements from southern analyses. This analysis shows great differences between TE distributions, even among closely related species. Some TEs are distributed according to the phylogeny of their host specie; others do not entirely follow the phylogeny, suggesting horizontal transfers. A higher number of insertion sites for most TEs in the genome of D. melanogaster is observed when compared with that in D. simulans. This suggests either intrinsic differences in genomic characteristics between the two species, or the influence of differing effective population sizes, although biases due to the use of TE probes coming mostly from D. melanogaster and to the way TEs are initially detected in species cannot be ruled out. Data on TEs more specific to the species under consideration are necessary for a better understanding of their distribution in organisms and populations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Qiang Zhang  Gary Kochert 《Genetica》1997,101(3):145-152
Transposable elements similar to Tourist elements from maize were isolated from the rice genome. The elements were about 300 bp, exhibited short terminal inverted repeats (TIR), and appeared to show preferential insertion at TAA sites. Some rice Tourist elements seem to have recently transposed. Based on the sequences of cloned elements, two classes of rice Tourist elements have been identified. Members of these two classes apparently amplified independently at different times in the past. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
转座因子对水稻同义密码子使用偏性的影响   总被引:1,自引:0,他引:1  
利用635个包含完整转座因子插入的粳稻CDS序列,对转座因子如何影响基因编码区的碱基组成及基因的表达水平,进而对基因同义密码子的使用偏性产生影响进行了详细分析。结果表明:转座因子插入极显著地影响到基因编码区的同义密码子使用但并非唯一因素;转座因子对不同基因的表达水平具有多重影响,有的基因表达被抑制,有的反而增强,但总的来说它减少了基因表达水平对同义密码子使用的影响程度。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号