首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hybridisation and introgression are natural phenomena that may lead to the transfer of adaptive alleles from one species to another and increased species diversity. At the same time, hybridisation and subsequent introgression threaten many species world‐wide through the loss of genetic and species diversity. In Australia, introgressive hybridisation between native and alien species has not typically been considered a significant threat to native biodiversity because of the taxonomic distance between native and alien biota. However, many native fish have been introduced outside their natural range. Recently, four taxa in the genus Melanotaenia have been nationally listed as threatened due to introgressive hybridisation with introduced Melanotaenia splendida. We examined pre‐ and post‐zygotic barriers to hybridisation between M. splendida and one of these threatened taxa—Running River rainbowfish (RRR)—to assess the potential for hybridisation to occur. We used dichotomous mate choice experiments to examine pre‐zygotic barriers and mating experiments to examine post‐zygotic barriers. Size was not a significant predictor of the proportion of time subjects spent with a potential mate, nor was there any significant difference in the amount of time subjects spent with potential mates of their own or the opposite species. Eggs from hybrid pairings with female RRR had a slightly higher hatching rate than those from hybrid pairings with female M. splendida, but neither were significantly different from intraspecies crosses. We could not identify any definite barriers to hybridisation, demonstrating that the introduction of “native” fish species outside their natural range poses a higher risk of hybridisation than previously thought. We call for better education around the consequences of moving “native” fish and the development of rapid response plans to deal with recently established alien populations of Australian fish species in order to prevent future extinctions due to introgressive hybridisation.  相似文献   

2.
Here we report the development and characterization of 17 anonymous nuclear markers for cetacean species. These markers were isolated from a genomic library built from a common dolphin (genus Delphinus), and tested across several families within Cetacea. An average of 1 SNP per 272 bp was found in 10 anonymous markers screened for polymorphism within the genus Delphinus (total of 6,537 bp sequenced). These markers represent a significant addition to the set of tools used in genetic studies of cetaceans where population and species boundaries have to be inferred in order to implement proper conservation strategies.  相似文献   

3.
Neolebouria moretonensis n. sp. is described from Gerres subfasciatus (Gerreidae) from Moreton Bay, south-east Queensland and N. lineatus n. sp. is described from Centroberyx lineatus (Berycidae) from off Rottnest Island, south-west Western Australia. C. lineatus represents a new host family and order (Beryciformes) for the genus. The two new species are distinguished within the genus by their entire, tandem to oblique testes and cirrus-sacs that do not extend into the hind-body, by being less than 1 mm in length, and by the position of the genital pore and the relative size of the forebody and post-testicular region. N. lineatus and N. moretonensis are very similar but are distinguished by their caeca which extend further posteriorly in N. moretonensis. There is no apparent pattern in the host-specificity of this genus.  相似文献   

4.
The new genus, Neopeplus, is proposed to accommodate two remarkable new mirine plant bug species, N. trianai, from Australia and N. dogoni, from New Guinea. External anatomy and genital structures of both sexes of N. trianai and of N. dogoni male are described. The possible phyletic relationships of the new genus are briefly analysed.  相似文献   

5.
Over the past few decades, use of molecular markers for species delimitation has drastically increased. Schoenoplectiella Lye has been recognized as a taxonomically difficult genus because of its morphological simplicity and frequent interspecific hybridization. The main objective of this study was to clarify the taxonomic identities of eight Schoenoplectiella species by use of molecular markers. We also evaluated the genetic relationships among S. × trapezoidea, known as a natural hybrid, and its close relatives. We used six microsatellite markers for 44 individuals from 31 natural populations of eight Schoenoplectiella species in South Korea. Six microsatellite marker combinations generated 59 amplification-detectable bands, of which 33 were specifically detected in one or more individuals of each species. Cluster analysis revealed that the grouping was consistent with the taxonomically recognized species. Our results do not support the hybrid origin of S. × trapezoidea. Rather, they suggest that this species is more closely related to S. hotarui. The informative microsatellite markers enabled us to clarify the distinctions among Schoenoplectiella species from South Korea and to identify the genetic relationships among these species. The molecular signatures found suitable for accurate identification of Schoenoplectiella species can be reliably used for studies of the phylogeny and evolution of this genus.  相似文献   

6.
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural 13C and 15N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and 13C and 15N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia‐associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus‐avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia‐associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre‐adaptation to mycoheterotrophy in the whole Neottieae.  相似文献   

7.
Paraorygmatobothrium taylori n. sp. (Tetraphyllidea: Phyllobothriidae) is described from the Australian weasel shark Hemigaleus australiensis White, Last & Compagno in Moreton Bay, off Queensland, Australia. The new species differs from 10 of the 11 described species of Paraorygmatobothrium Ruhnke, 1994 by the possession of prominent, semicircular bothridial muscle bands. From Pbarberi Ruhnke, 1994, with which it shares the bothridial muscle bands, it differs in the possession of a cephalic peduncle and vitelline follicles that extend almost to the mid-line of the proglottis and are reduced, rather than completely interrupted, at the level of the ovary. P. janineae Ruhnke, Healy & Shapero, 2006 is recorded from its type–host but in a new locality, Moreton Bay, off Queensland, Australia. P. taylori is the third species of the genus recorded from the Hemigaleidae in Australian waters. Three of the eight known hemigaleid species are now recorded to harbour this genus, and three different species are now known from the two hemigaleids found in Australian waters.  相似文献   

8.
The key process in speciation concerns the formation and maintenance of reproductive isolating barriers between diverging lineages. Although species boundaries are frequently investigated between two species across many taxa, reproductive isolating barriers among multiple species (>2) that would represent the most common phenomenon in nature, remain to be clarified. Here, we use double digest restriction‐site associated DNA (ddRAD) sequencing to examine patterns of hybridization at a sympatric site where three Ligularia species grow together and verify whether those patterns contribute to the maintenance of boundaries among species. The results based on the RAD SNP datasets indicated hybridization Ligularia cyathiceps × L. duciformis and L. duciformis × L. yunnanensis were both restricted to F1s plus a few first‐generation backcrosses and no gene introgression were identified, giving rise to strong reproductive isolation among hybridizing species. Moreover, hybrid swarm simulation, using HYBRIDLAB, indicated the RAD SNP datasets had sufficient discriminatory power for accurate hybrid detection. We conclude that parental species show strong reproductive isolation and they still maintain species boundaries, which may be the key mechanism to maintain species diversity of Ligularia in the eastern Qinghai‐Tibetan Plateau and adjacent areas. Moreover, this study highlights the effectiveness of RAD sequencing in hybridization studies.  相似文献   

9.
We present the EU LIFE PonDerat project, which is aimed at restoring the natural ecosystems of the Pontine Archipelago, a group of islands located off the western coast of Italy. The spread of invasive species is a major environmental threat on these islands, which are rich in rare habitats and endemic species and are important sites for the conservation of Mediterranean biodiversity. The project focuses on the conservation of species and habitats that are protected by EU laws but are currently threatened by introduced plants and animals. The main targets of the control measures are black rats, feral goats, mouflons and invasive plants of the genus Carpobrotus. Conservation measures focus on the shearwaters Puffinus yelkouan and Calonectris diomedea, which are endemic to the Mediterranean and are listed in Annex I of the European Bird Directive. Conservation measures also focus on island habitats of great biogeographical value, which are listed in Annex I of the European Habitats Directive and are seriously threatened by introduced herbivores and by invasive plants. The main outcome expected from this project is that the restoration of ecosystem functions will enhance the breeding success and population size of shearwaters and lead to the recovery of target habitats.  相似文献   

10.
A toxicological study of an axenic cell line of novel species Chattonella ovata Y. Hara et Chihara (Raphidophyceae) revealed that cultured species of sea bream (Pagrus major), horse mackerel (Trachurus japonicus), and yellowtail (Seriola quinqueradiata) were killed by 4.1–6.8 × 103, 5.4 × 103, and 2.8 × 103 cells/mL, respectively. The sensitivity of the gill lamellae to C. ovata differed among the fish species tested. This finding revealed that C. ovata was highly toxic to the cultured fish. Histological examination showed that edema and hyperplasia of the secondary gill lamellae of red sea bream and horse mackerel occurred when exposed to, or killed by C. ovata, whereas severe damage in the gill lamellae was not observed in yellowtail. Chattonella produced high amounts of superoxide anion radicals and hydrogen peroxide, possibly responsible for the fish death observed. Based on the results of this study and occurrence of a red tide by this organism in China in 2001, we consider this organism to be one of the harmful algae in coastal waters. This is the first report demonstrating that C. ovata is highly toxic to fish, and that it produces superoxide and hydrogen peroxide.  相似文献   

11.
A species complex is a group of closely related species whose ecological or morphological boundaries are sufficiently vague that delimiting one species from another is difficult. In Australia, a group of four stingless bee species – Tetragonula carbonaria Smith, Tetragonula hockingsi Cockerell, Tetragonula mellipes Friese, and Tetragonula davenporti Franck – form a species complex in which gross morphology is clinal and overlapping. The species are most readily distinguished by the morphology of their brood combs. Here we genetically characterize bees sampled in areas where the species do and do not have contact. Our data corroborate previous evidence that T. hockingsi and T. carbonaria are genetically distinct and that there are two genetically distinct groups of T. hockingsi – one in the north and the other in the south of Queensland. Curiously, northern populations of T. hockingsi, which are allopatric to T. carbonaria, are genetically closer to T. carbonaria than are southern populations of T. hockingsi, which are in sympatry with T. carbonaria. We detected three hybrid colonies that appear to have arisen because of anthropogenic movement of T. hockingsi colonies from north to south of Queensland where males mated with local T. carbonaria queens. We discuss the status of T. davenporti, a recently described species cryptically similar to T. hockingsi from south‐east Queensland. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 149–161.  相似文献   

12.
Prodistomum angelae (Kruse, 1981) n. comb. [originally Lepocreadium] is redescribed from the type-host, Scorpis georgiana, from off southwestern Western Australia. P. keyam n. sp. is described from Monodactylus argenteus from off southeastern Queensland. It differs from other members of the genus in its short ejaculatory duct. The genus Prodistomum Linton is discussed and redefined, and an updated key and record list of the nine recognised species are given.  相似文献   

13.
The origin ofEchinocereus ×lloydii Britt. & Rose, pro sp. (Lloyd's Hedgehog Cactus) was investigated using comparative morphology, cytology, biochemistry, and particularly, artificial hybridization. Numerous artificial crosses between the putative parentsE. coccineus Engelm. (a species of claret-up cactus) andE. dasyacanthus Engelm. (Texas Rainbow Cactus) were successful, resulting in the production of hundreds of seeds with hybrid embryos. The F1 hybrid progeny (i.e., syntheticE. ×lloydii) grew to sexual maturity in about four and one-half years, whereupon successful backcrosses and F2 generation hybrids were also obtained. The known F1 hybrids closely approximated naturalE. ×lloydii. The fertility of these syntheticE. ×lloydii was high, like their natural counterparts. The populations ofE. ×lloydii in Pecos County, Texas are inferred to have originated as the result of natural interspecific hybridization. It is assumed thatE. ×lloydii or similar plants may arise wherever the parental taxa grow sympatrically.  相似文献   

14.
Thirty-eight microsatellite markers were developed from an enriched genomic DNA library of the cyprinid fish (minnow) Dionda episcopa. The microsatellites include 31 perfect-repeat motifs (29 dinucleotide, 1 trinucleotide, and 1 tetranucleotide) and 7 imperfect-repeat dinucleotide motifs. The microsatellite primers were used to amplify microsatellites from five related congeners: D. argentosa, D. diaboli, D. episcopa, D. nigrotaeniata, and D. serena. One species (D. diaboli) is listed as threatened and critically imperiled and two species (D. argentosa and D. serena) are listed as imperiled; the conservation status of D. nigrotaeniata is unknown. The number of experimentally tractable microsatellite markers varied from 28 for D. diaboli to 34 for D. episcopa. The number of polymorphic microsatellites conforming to Hardy–Weinberg expectations (following Bonferroni correction) ranged from 19 (D. diaboli) to 27 (D. argentosa). One pairwise comparison of microsatellites (in D. nigrotaeniata) deviated significantly from expectations of genotypic equilibrium. The microsatellite markers will be useful for conservation and population-genetic studies of these and other species in genus Dionda.  相似文献   

15.
In this study, the aquatic monocot Baldellia (Alismataceae) is used as a model for evaluating the general hindrances and shortfalls in the global conservation status assessment of a threatened taxon. Our study clearly shows that Linnean shortfalls (uncertainty in the number of species and taxonomy) and the Wallacean shortfall (fragmentary knowledge regarding distribution) form the basis for all other hindrances. We demonstrate that even in Europe, which has traditionally been very well investigated, between 60 and 75% of regions or countries possess no detailed distribution maps and/or data banks for Baldellia spp. Furthermore, between 50 and 60% of regions do not have any published red list category. Thus, only general conclusions concerning the global conservation status of the three Baldellia taxa are possible—a global assessment of conservation status for B. ranunculoides subsp. repens is nearly impossible. Baldellia ranunculoides s.str. shows a strong decline in practically all regions of its natural range, and thus it is probably the most threatened species in the genus. Baldellia alpestris is the least threatened species in the genus, even though it is a narrow endemic. Our case study clearly shows the need for reinforced coordination of research and conservation activities as well as an urgent need for data accessibility regarding taxonomic, chorological and conservation studies of endangered species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Glow-worms are bioluminescent fly larvae (Order Diptera, genus Arachnocampa) found only in Australia and New Zealand. Their core habitat is rainforest gullies and wet caves. Eight species are present in Australia; five of them have been recently described. The geographic distribution of species in Australia encompasses the montane regions of the eastern Australian coastline from the Wet Tropics region of northern Queensland to the cool temperate and montane rainforests of southern Australia and Tasmania. Phylogenetic trees based upon partial sequences of the mitochondrial genes cytochrome oxidase II and 16S mtDNA show that populations tend to be clustered into allopatric geographic groups showing overall concordance with the known species distributions. The deepest division is between the cool-adapted southern subgenus, Lucifera, and the more widespread subgenus, Campara. Lucifera comprises the sister groups, A. tasmaniensis, from Tasmania and the newly described species, A. buffaloensis, found in a high-altitude cave at Mt Buffalo in the Australian Alps in Victoria. The remaining Australian glow-worms in subgenus Campara are distributed in a swathe of geographic clusters that extend from the Wet Tropics in northern Queensland to the temperate forests of southern Victoria. Samples from caves and rainforests within any one geographic location tended to cluster together within a clade. We suggest that the morphological differences between hypogean (cave) and epigean (surface) glow-worm larvae are facultative adaptations to local microclimatic conditions rather than due to the presence of cryptic species in caves.  相似文献   

18.
1. Species in the genus Neoseiulus are considered to be generalist predators, with some species used in biological control programmes against phytophagous mites and insects. 2. A general survey of Neoseiulus species in inland Australia indicated that different species are associated with particular tree species. This pattern of host plant use was investigated for four Neoseiulus species (N. buxeus, N. cappari, N. brigarinus, N. eremitus) by means of a sampling programme through time and across space. 3. Each species of Neoseiulus was collected entirely or mostly from one species of tree; little or no overlap was detected despite the tree species growing in well‐mixed stands. Host plant specificity thus appears to be strong in this genus. 4. Species in two other genera (Pholaseius and Australiseiulus), also considered to be predatory, showed a similar association with particular tree species. 5. The implications for the use of these predators in biological control are considerable. In particular, phytoseiid species with specific needs in terms of host plants may not be suitable for use as general purpose predators. Meeting the needs of phytoseiids through the modification of host plant attributes may be a step towards enhancing their efficacy as biological control agents.  相似文献   

19.
The taxonomic status of humpback dolphins (genus Sousa, sub-family Delphininae) is unresolved. While the classification of this genus ranges from a single to three nominal species, the International Union for Conservation of Nature and the International Whaling Commission only recognise a ‘two-species’ taxonomy (S. teuszii in west Africa, and S. chinensis in the Indo-Pacific). Under the IUCN (2008), S. chinensis is listed as ‘near threatened’, but is only considered as a ‘migratory’ species in Australia. Taxonomic resolution of the genus Sousa is needed to define particular conservation status and develop appropriate management actions. Using phylogenetic analyses of 1,082 bp of mitochondrial and 1,916 bp of nuclear DNA, we provide multiple lines of genetic evidence for the genetic distinction of S. chinensis in China and Indonesia from S. chinensis in Australia. The separation of Australian Sousa from Sousa of Southeast Asia requires a review of their current conservation status and respective management actions.  相似文献   

20.
An adverse consequence of applying morphology‐based taxonomic systems to catalog cyanobacteria, which generally are limited in the number of available morphological characters, is a fundamental underestimation of natural biodiversity. In this study, we further dissect the polyphyletic cyanobacterial genus Lyngbya and delineate the new genus Okeania gen. nov. Okeania is a tropical and subtropical, globally distributed marine group abundant in the shallow‐water benthos. Members of Okeania are of considerable ecological and biomedical importance because specimens within this group biosynthesize biologically active secondary metabolites and are known to form blooms in coastal benthic environments. Herein, we describe five species of the genus Okeania: Ohirsuta (type species of the genus), Oplumata, Olorea, Oerythroflocculosa, and O. comitata, under the provisions of the International Code of Nomenclature for Algae, Fungi, and Plants. All five Okeania species were morphologically, phylogenetically, and chemically distinct. This investigation provides a classification system that is able to identify Okeania spp. and predict their production of bioactive secondary metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号