首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The kinetics of population growth and death were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown at light intensities ranging from limitation to photoinhibition (5 W·m−2 to 160 W·m−2) in a nutrient-replete turbidostat. Steady-state growth rate (μ, or dilution rate, D) increased with light intensity from 0.44·day−1 at a light intensity of 5 W·m−2 to 0.99·day−1 at 20 W·m−2 and started to decrease above about 22 W·m−2, reaching 0.56·day−1 at 160 W·m−2. The Haldane function of enzyme inhibition fit the growth data poorly, largely because of the unusually narrow range of saturation intensity. However, it produced a good fit (P < 0.001) for growth under photoinhibition. Anabaena flos-aquae died at different specific death rates (γ) below and above the saturation intensity. When calculated as the slope of a vx−1 and D−1 plot, where vx and D are cell viability (or live cell fraction) and dilution rate, respectively; γ was 0.047·day−1 in the range of light limitation and 0.103·day−1 under photoinhibition. Live vegetative cells and heterocysts, either in numbers or as a percentage of the total cells, showed a peak at the saturation intensity and decreased at lower and higher intensities. The ratio of live heterocysts to live vegetative cells increased with intensity when light was limiting but decreased when light was supersaturating. In cells growing at the same growth rate, the ratio was significantly lower under light inhibition than under subsaturation and the cell N:C ratio was also lower under inhibition. The steady-state rate of dissolved organic carbon (DOC) production increased with light intensity. However, its production as a percentage of the total C fixation was lowest at the optimum intensity and increased as the irradiance decreased or increased. The rate and percentage was significantly higher under photoinhibition than limitation in cells growing at the same growth rate. About 22% of the total fixed carbon was released as DOC at the highest light intensity. No correlation was found between the number of dead cells and DOC.  相似文献   

2.
Northern peatlands contain up to 25% of the world's soil carbon (C) and have an estimated annual exchange of CO2‐C with the atmosphere of 0.1–0.5 Pg yr−1 and of CH4‐C of 10–25 Tg yr−1. Despite this overall importance to the global C cycle, there have been few, if any, complete multiyear annual C balances for these ecosystems. We report a 6‐year balance computed from continuous net ecosystem CO2 exchange (NEE), regular instantaneous measurements of methane (CH4) emissions, and export of dissolved organic C (DOC) from a northern ombrotrophic bog. From these observations, we have constructed complete seasonal and annual C balances, examined their seasonal and interannual variability, and compared the mean 6‐year contemporary C exchange with the apparent C accumulation for the last 3000 years obtained from C density and age‐depth profiles from two peat cores. The 6‐year mean NEE‐C and CH4‐C exchange, and net DOC loss are −40.2±40.5 (±1 SD), 3.7±0.5, and 14.9±3.1 g m−2 yr−1, giving a 6‐year mean balance of −21.5±39.0 g m−2 yr−1 (where positive exchange is a loss of C from the ecosystem). NEE had the largest magnitude and variability of the components of the C balance, but DOC and CH4 had similar proportional variabilities and their inclusion is essential to resolve the C balance. There are large interseasonal and interannual ranges to the exchanges due to variations in climatic conditions. We estimate from the largest and smallest seasonal exchanges, quasi‐maximum limits of the annual C balance between 50 and −105 g m−2 yr−1. The net C accumulation rate obtained from the two peatland cores for the interval 400–3000 bp (samples from the anoxic layer only) were 21.9±2.8 and 14.0±37.6 g m−2 yr−1, which are not significantly different from the 6‐year mean contemporary exchange.  相似文献   

3.
Kelp forests provide vital ecosystem services such as carbon storage and cycling, and understanding primary production dynamics regarding seasonal and spatial variations is essential. We conducted surveys at three sites in southeast Tasmania, Australia, that had different levels of water motion, across four seasons to determine seasonal primary production and carbon storage as living biomass for kelp beds of Lessonia corrugata (Order Laminariales). We quantified blade growth, erosion rates, and the variation in population density and estimated both the net biomass accumulation (NBA) per square meter and the carbon standing stock. We observed a significant difference in blade growth and erosion rates between seasons and sites. Spring had the highest growth rate (0.02 g C · blade−1 · d−1) and NBA (1.62 g C · m−2 · d−1), while summer had the highest blade erosion (0.01 g C · blade−1 · d−1), with a negative NBA (−1.18 g C · m−2 · d−1). Sites exhibiting lower blade erosion rates demonstrated notably greater NBA than sites with elevated erosion rates. The sites with the highest water motion had the slowest erosion rates. Moreover, the most wave-exposed site had the densest populations, resulting in the highest NBA and a greater standing stock. Our results reveal a strong seasonal and water motion influence on carbon dynamics in L. corrugata populations. This knowledge is important for understanding the dynamics of the carbon cycle in coastal regions.  相似文献   

4.
To test the possibility of inorganic carbon limitation of the marine unicellular alga Emiliania huxleyi (Lohmann) Hay and Mohler, its carbon acquisition was measured as a function of the different chemical species of inorganic carbon present in the medium. Because these different species are interdependent and covary in any experiment in which the speciation is changed, a set of experiments was performed to produce a multidimensional carbon uptake scheme for photosynthesis and calcification. This scheme shows that CO2 that is used for photosynthesis comes from two sources. The CO2 in seawater supports a modest rate of photosynthesis. The HCO is the major substrate for photosynthesis by intracellular production of CO2 (HCO+ H+→ CO2+ H2O → CH2O + O2). This use of HCO is possible because of the simultaneous calcification using a second HCO, which provides the required proton (HCO+ Ca2+→ CaCO3+ H+). The HCO is the only substrate for calcification. By distinguishing the two sources of CO2 used in photosynthesis, it was shown that E. huxleyi has a K½ for external CO2 of “only” 1.9 ± 0.5 μM (and a Vmax of 2.4 ± 0.1 pmol·cell−1·d−1). Thus, in seawater that is in equilibrium with the atmosphere ([CO2]= 14 μM, [HCO]= 1920 μM, at fCO2= 360 μatm, pH = 8, T = 15° C), photosynthesis is 90% saturated with external CO2. Under the same conditions, the rate of photosynthesis is doubled by the calcification route of CO2 supply (from 2.1 to 4.5 pmol·cell−1·d−1). However, photosynthesis is not fully saturated, as calcification has a K½ for HCO of 3256 ± 1402 μM and a Vmax of 6.4 ± 1.8 pmol·cell−1·d−1. The H+ that is produced during calcification is used with an efficiency of 0.97 ± 0.08, leading to the conclusion that it is used intracellularly. A maximum efficiency of 0.88 can be expected, as NO uptake generates a H+ sink (OH source) for the cell. The success of E. huxleyi as a coccolithophorid may be related to the efficient coupling between H+ generation in calcification and CO2 fixation in photosynthesis.  相似文献   

5.
The growth of heterocystous bluegreen algae in various concentrations of sodium, was examined in axenic culture as well as in situ studies. Anabaena cylindrica Lemm. with no Na+ added, suffered from decreased rates of acetylene reduction, 14C, assimilation, excretion of organic C as well as lower concentrations of chlorophyll a and particulate organic C compared to cultures supplied with 5, 10, and 50 mg Na+·l−1 Sodium deficient algae released, extracellularly a higher percentage of previously fixed C as organic C. No differences in any parameter measured were demonstrable among cultures grown with 5, 10, and 50 mg Na+·l−1 High nitrate concentrations (20 mg NO3·l−1) resulted in decreased rates of acetylene reduction and heterocyst numbers in. Na sufficient, and Na deficient cultures: however, decreased, cellular Na content at high NO3 levels occurred only in N deficient, cultures. Higher percentages of excreted organic C occurred with increasing NO3 concentrations in Na deficient cultures. Sodium enrichment of natural bluegreen populations with the addition of 50, 100, and 200 mg Na+·l−1 elicited neither a stimulatory nor an inhibitory response in photosynthetic C fixation. In contrast, the addition of small amounts of Na+ (5 mg·l) resulted in increased C fixation. However, since the Na. concentration of the lake water, at ca. 5 mg Na+·l−1, was sufficient for growth of the bluegreens present, sodium, is not assumed to be limiting under most natural conditions. No increase in in situ acetylene reduction rates occurred with additions of sodium.  相似文献   

6.
Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its δ13C signature. Leaching of biogenic DIC was 8.3±4.9 g m?2 yr?1 for forests, 24.1±7.2 g m?2 yr?1 for grasslands, and 14.6±4.8 g m?2 yr?1 for croplands. DOC leaching equalled 3.5±1.3 g m?2 yr?1 for forests, 5.3±2.0 g m?2 yr?1 for grasslands, and 4.1±1.3 g m?2 yr?1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m?2 yr?1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.  相似文献   

7.
The effects of NH4+ assimilation on dark carbon fixation and β-1,3-glucan metabolism in the N-limited marine diatom Skeletonema costatum (Grev.) Cleve (Bacillariophyceae) were investigated by chemical analysis of cell components and incorporation of 14C-bicarbonate. The diatom was grown in pH-regulated batch cultures with a 14:10 h LD cycle until N depletion. The cells were then incubated in the dark with 14C-bicarbonate, but without a source of N for 2 h, then in the dark with 63 μmol·L−1 NH4+ for 3 h. Without N, the cellular concentration of free amino acids was almost constant (∼4.5 fmol·cell−1). Added NH4+ was assimilated at a rate of 12 fmol·cell−1·h−1, and the cellular amino acid pool increased rapidly (doubled in <1 h, tripled in <3 h). The glutamine level increased steeply (45× within 3 h), and the Gln/ Glu ratio increased from 0.1 to 2.4 within 3 h. The rate of dark C fixation during N depletion was only 1.0 fmol·cell−1·h−1. The addition of NH4+ strongly stimulated dark C fixation, leading to an assimilation rate of 4.0 fmol·cell−1·h−1, corresponding to a molar C/N uptake ratio of 0.33. Biochemical fractionation of organic 14C showed no significant 14C fixation into amino acids during N depletion, but during the first 1–2 h of NH4+ assimilation, amino acids were rapidly radiolabeled, accounting for virtually all net 14C fixation. These results indicate that anaplerotic β-carboxylation is activated during NH4+ assimilation to provide C4 intermediates for amino acid biosynthesis. The level of cellular β-1,3-d-glucan was constant (16.5 pg·cell−1) during N depletion, but NH4+ assimilation activated a mobilization of 28% of the reserve glucan within 3 h. The results indicate that β-1,3-glucan in diatoms is the ultimate substrate for β-carboxylation, providing precursors for amino acid biosynthesis in addition to energy from respiration.  相似文献   

8.
Photosynthesis and dark respiration rates were measured in water and in air, and the capacity to recover photosynthetic activity from emersion stress was examined for two species of intertidal, epiphytic macroalgae—Bostrychia calliptera (Montagne) Montagne and Caloglossa leprieurii (Montagne) J. Agardh—collected on prop roots of the red mangrove Rhizophora mangle L. in Buenaventura Bay, Pacific coast of Colombia. In both species, net photosynthetic rates were significantly higher under submersed conditions. Maximum photosynthetic rates (Pmax) in water and in air were highest in B. calliptera, 126 ± 4 versus 52 ± 9 μmol O2·mg chl a−1·h−1, respectively. In C. leprieurii, Pmax of submerged plants in water and in air were 98 ± 9 versus 30 ± 11 μmol O2·mg chla−1·h−1. The photoinhibition model of Platt et al. (1980) was used to fit the experimental data in both water and air for both species. Photoinhibition occurred at irradiance as low as 200 μmol·m−2·s−1. The photosynthesis–light response curves demonstrated an adaptation to shaded habitats for both species, as light compensation points in water and air for both species were below 17 ± 5 μmol·m−2·s−1. The rate of dehydration was significantly lower in thalli of B. calliptera compared to C. leprieurii. An increase of photosynthetic activity in B. calliptera was evident between 5% and 15% water loss, but rates decreased thereafter with declining water content. In C. leprieurii, desiccation negatively influenced photosynthetic rates that significantly decreased linearly with declining water content. In B. calliptera, net photosynthesis reached zero only at a water content between 29% and 35%, whereas in C. leprieurii no net photosynthesis occurred in plants containing less than about 50% of their relative water content. Resubmerged plants ofB. calliptera exhibited 100% photosynthetic recovery after 45 min, whereas C. leprieurii recovered 100% at about 120 min. On the basis of the comparison of rates of light-saturated net photosynthesis for B. calliptera in air versus in water, aerial photosynthetic activity ranged from 35% to 42% of that in water, whereas the emersed photosynthetic capacity of C. leprieurii ranged from 24% to 29% of that in water. Using tidal predictions and the emersed photosynthetic rates, a carbon balance model was constructed for both species over a single daylight period. The calculations indicated that emersed photosynthesis increased average daily carbon production of B. calliptera by 17% and C. leprieuri by 12%. The physiological responses to desiccation stress and the photosynthetic recovery capacities between species correlated with, and may determine, their vertical distribution in the mangrove habitats of Buenaventura Bay.  相似文献   

9.
1. Dissolved organic carbon (DOC) concentration was determined for a range of lakes of varying conductivity (30–4000 μS cm−1) in the low Arctic of SW Greenland. DOC concentration range from <1 to >100 mg C L−1, occasionally approaching 200 mg C L−1 in meromictic, oligosaline lakes. DOC concentration was strongly related to [log10] conductivity and total nitrogen. 2. Peak DOC concentrations (>80 mg L−1) occur in lakes located approximately 50 km from the present ice sheet margin, a zone of low effective precipitation; evaporative concentration is the first‐order control on DOC concentration. Lakes at the coast and closer to the ice margin had lower DOC concentrations (<20 mg C L−1). Local factors, notably the presence or absence of an outflow and catchment morphometry, resulted in considerable variability in concentration (20–100 mg C L−1) within the area of maximum concentration around 51°W. 3. Despite their high DOC concentration, these lakes are essentially colourless. Dissolved organic matter (DOM) absorption (a375) was low in most lakes (<10 m−1) with maximum values (approximately 20 m−1) occurring in one humic‐stained lake in the area. Absorption values corrected for DOC concentration () were very low (<0.6 m2 g−1 C) for all lakes apart from those at the coast, perhaps reflecting greater allochthonous inputs at these sites. 4. S, the spectral slope coefficient, ranged from 16 to 27 μm−1 and was weakly correlated with DOC concentration. Both a375 and S showed similar distribution patterns along the sampling gradient as did DOC, with maximum values at approximately 51°W. High and low S may indicate fresher, more rapidly flushed, systems with less degraded DOM or greater inputs from their catchments. 5. The lakes closer to the head of the fjord with higher conductivity, had low (<0.2 m2 g−1 C) and high S (>21 μm−1) and this may reflect increasingly longer lake water residence times, greater DOM age and photochemical degradation.  相似文献   

10.
How strong is the current carbon sequestration of an Atlantic blanket bog?   总被引:1,自引:0,他引:1  
Although northern peatlands cover only 3% of the land surface, their thick peat deposits contain an estimated one‐third of the world's soil organic carbon (SOC). Under a changing climate the potential of peatlands to continue sequestering carbon is unknown. This paper presents an analysis of 6 years of total carbon balance of an almost intact Atlantic blanket bog in Glencar, County Kerry, Ireland. The three components of the measured carbon balance were: the land‐atmosphere fluxes of carbon dioxide (CO2) and methane (CH4) and the flux of dissolved organic carbon (DOC) exported in a stream draining the peatland. The 6 years C balance was computed from 6 years (2003–2008) of measurements of meteorological and eddy‐covariance CO2 fluxes, periodic chamber measurements of CH4 fluxes over 3.5 years, and 2 years of continuous DOC flux measurements. Over the 6 years, the mean annual carbon was ?29.7±30.6 (±1 SD) g C m?2 yr?1 with its components as follows: carbon in CO2 was a sink of ?47.8±30.0 g C m?2 yr?1; carbon in CH4 was a source of 4.1±0.5 g C m?2 yr?1 and the carbon exported as stream DOC was a source of 14.0±1.6 g C m?2 yr?1. For 2 out of the 6 years, the site was a source of carbon with the sum of CH4 and DOC flux exceeding the carbon sequestered as CO2. The average C balance for the 6 years corresponds to an average annual growth rate of the peatland surface of 1.3 mm yr?1.  相似文献   

11.
We investigated the composition of benthic microbial mats in permanently ice-covered Lake Hoare, Antarctica, and their irradiance vs. photosynthetic oxygen exchange relationships. Mats could be subdivided into three distinct depth zones: a seasonally ice-free “moat” zone and two under-ice zones. The upper under-ice zone extended from below the 3.5 m thick ice to approximately 13 m and the lower from below 13 m to 22 m. Moat mats were acclimated to the high irradiance they experienced during summer. They contained photoprotective pigments, predominantly those characteristic of cyanobacteria, and had high compensation and saturating irradiances (Ec and Ek) of 75 and 130 μmol photons·m−2·s−1, respectively. The moat mats used light inefficiently. The upper under-ice community contained both cyanobacteria and diatoms. Within this zone, biomass (as pigments) increased with increasing depth, reaching a maximum at 10 m. Phycoerythrin was abundant in this zone, with shade acclimation and efficiency of utilization of incident light increasing with depth to a maximum of 0.06 mol C fixed·mol−1 incident photons under light-limiting conditions. Precipitation of inorganic carbon as calcite was associated with this community, representing up to 50% of the carbon sequestered into the sediment. The lower under-ice zone was characterized by a decline in pigment concentrations with depth and an increasing prevalence of diatoms. Photosynthesis in this community was highly shade acclimated and efficient, with Ec and Ek below 0.5 μmol·m−2·s−1 and 2 μmol·m−2·s−1, respectively, and maximum yields of 0.04 mol C fixed·mol−1 incident quanta. Carbon uptake in situ by both under-ice and moat mats was estimated at up to 100 and 140 mg·m−2·day−1, based on the photosynthesis–irradiance curves, incident irradiance, and light attenuation by ice and the water column.  相似文献   

12.
Here, we report the first‐ever measurements of light CO2 respiration rate (CRR) by seaweeds. We measured the influence of temperature (15–25°C) and light (irradiance from 60 to 670 μmol · m?2 · s?1) on the light CCR of two subtropical seaweed species, and measured the CRR of seven different seaweed species under the same light (150 μmol · m?2 · s?1) and temperature (25°C). There was little effect of irradiance on light CRR, but there was an effect of temperature. Across the seven species light CRR was similar to OCR (oxygen consumption rate in the dark), with the exception of a single species. The outlier species was a coralline alga, and the higher light CRR was probably driven by calcification. CRR could be estimated from OCR, as well as carbon photosynthetic rates from oxygen photosynthetic rates, which suggests that previous studies have probably provided good estimations of gross photosynthesis for seaweeds.  相似文献   

13.
Blue carbon ecosystems (BCEs) are important nature-based solutions for climate change-mitigation. However, current debates question the reliability and contribution of BCEs under future climatic-scenarios. The answer to this question depends on ecosystem processes driving carbon-sequestration and -storage, such as primary production and decomposition, and their future rates. We performed a global meta-analysis on litter decomposition rate constants (k) in BCEs and predicted changes in carbon release from 309 studies. The relationships between k and climatic factors were examined by extracting remote-sensing data on air temperature, sea-surface temperature, and precipitation aligning to the decomposition time of each experiment. We constructed global numerical models of litter decomposition to forecast k and carbon release under different scenarios. The current k averages at 27 ± 3 × 10−2 day−1 for macroalgae were higher than for seagrasses (1.7 ± 0.2 × 10−2 day−1), mangroves (1.6 ± 0.1 × 10−2 day−1) and tidal marshes (5.9 ± 0.5 × 10−3 day−1). Macrophyte k increased with both air temperature and precipitation in intertidal BCEs and with sea surface temperature for subtidal seagrasses. Above a temperature threshold for vascular plant litter at ~25°C and ~20°C for macroalgae, k drastically increased with increasing temperature. However, the direct effect of high temperatures on k are obscured by other factors in field experiments compared with laboratory experiments. We defined “fundamental” and “realized” temperature response to explain this effect. Based on relationships for realized temperature response, we predict that proportions of decomposed litter will increase by 0.9%–5% and 4.7%–28.8% by 2100 under low- (2°C) and high-warming conditions (4°C) compared to 2020, respectively. Net litter carbon sinks in BCEs will increase due to higher increase in litter C production than in decomposition by 2100 compared to 2020 under RCP 8.5. We highlight that BCEs will play an increasingly important role in future climate change-mitigation. Our findings can be leveraged for blue carbon accounting under future climate change scenarios.  相似文献   

14.
1. The carbon budgets and assimilation efficiencies (AEs) of adults and juveniles of Daphnia magna were quantified using 14C as a tracer. Animals were fed pure Chlamydomonas reinhardtii or Scenedesmus obliquus at different food concentrations. Carbon AEs (46–70%) were comparable at food concentrations of 0.03–0.30 mg C L?1 for both algal species, but decreased to 34–49% when the food concentration further increased by 10‐fold. The carbon AEs were significantly and negatively correlated with the food level. 2. During the postdigestive period, partitioning of ingested carbon into different compartments including excretion, respiration and egestion was not influenced by the food species and life stage. There was a negative correlation between respiration (as % of total loss) and food concentration and a positive correlation between egestion (as % of total loss) and food concentration. Dissolved organic carbon (DOC) and CO2 accounted for 55–72% and 9–37%, respectively, of the total carbon loss from juveniles fed both algal diets. For adults, DOC and CO2 contributed to 44–64% and 20–47% of the total carbon loss, respectively. Particulate organic carbon (POC) was a minor pathway for the overall carbon loss. 3. The turnover and release budget of structural carbon (as moults and neonate reproduction) were further evaluated in long‐term experiments at different algal concentrations. Food concentration did not affect the carbon efflux or the carbon allocation into different physiological compartments except for respiration. Juveniles had twofold lower carbon turnover rate (0.12–0.16 day?1) than those of the adults (0.32–0.35 day?1). In adults, comparable carbon was allocated into DOC (35–42%) and reproduction (27–35%), which were the dominant routes for carbon loss. For the juveniles, DOC accounted for 42–64% of the total carbon loss. 4. About 21–38% of the total DOC released by adults and juveniles was associated with the high molecular weight organic carbon fraction (>5 kDa). Our results show that carbon was mainly lost by D. magna in the form of DOC during assimilation process as well as from the structural materials. Reproduction or maternal transfer was another major drain of body carbon for adult D. magna.  相似文献   

15.
1. Microbial decomposition of dissolved organic carbon (DOC) contributes to overall stream metabolism and can influence many processes in the nitrogen cycle, including nitrification. Little is known, however, about the relative decomposition rates of different DOC sources and their subsequent effect on nitrification. 2. In this study, labile fraction and overall microbial decomposition of DOC were measured for leaf leachates from 18 temperate forest tree species. Between 61 and 82% (mean, 75%) of the DOC was metabolized in 24 days. Significant differences among leachates were found for labile fraction rates (P < 0.0001) but not for overall rates (P=0.088). 3. Nitrification rates in stream sediments were determined after addition of 10 mg C L–1 of each leachate. Nitrification rates ranged from below detection to 0.49 μg N mL sediment–1 day–1 and were significantly correlated with two independent measures of leachate DOC quality, overall microbial decomposition rate (r=–0.594, P=0.0093) and specific ultraviolet absorbance (r=0.469, P=0.0497). Both correlations suggest that nitrification rates were lower in the presence of higher quality carbon. 4. Nitrification rates in sediments also were measured after additions of four leachates and glucose at three carbon concentrations (10, 30, and 50 mg C L–1). For all carbon sources, nitrification rates decreased as carbon concentration increased. Glucose and white pine leachate most strongly depressed nitrification. Glucose likely increased the metabolism of heterotrophic bacteria, which then out‐competed nitrifying bacteria for NH4+. White pine leachate probably increased heterotrophic metabolism and directly inhibited nitrification by allelopathy.  相似文献   

16.
1. We used first‐order kinetic parameters of biological oxygen demand (BOD), the constant of aerobic decomposition (k) and the asymptotic value of BOD (BODult), to characterise the lability of organic carbon pools in six lakes of different trophic state: L. Naroch, L. Miastro and L. Batorino (Belarus), L. Kinneret (Israel), L. Ladoga (Russia) and L. Mendota (U.S.A.). The relative contributions of labile and refractory organic carbon fractions to the pool of total organic carbon (TOC) in these lakes were quantified. We also determined the amounts of labile organic carbon within the dissolved and particulate TOC pools in the three Belarus lakes. 2. Mean annual chlorophyll concentrations (used as a proxy for lake trophic state) ranged from 2.3 to 50.6 μg L−1, labile organic carbon (OCL = 0.3BODult) from 0.75 to 2.95 mg C L−1 and k from 0.044 to 0.14 day−1. 3. Our data showed that there were greater concentrations of OCL but lower k values in more productive lakes. 4. In all cases, the DOC fraction dominated the TOC pool. OCL was a minor component of the TOC pool averaging about 20%, irrespective of lake trophic state. 5. In all the lakes, most (c. 85%) of the DOC pool was refractory, corresponding with published data based on measurements of bacterial production and DOC depletion. In contrast, a larger fraction (27–55%) of the particulate organic carbon (POC) pool was labile. The relative amount of POC in the TOC pool tended to increase with increasing lake productivity. 6. Long‐term BOD incubations can be valuable in quantifying the rates of breakdown of the combined particulate and dissolved organic carbon pools and in characterising the relative proportions of the labile and recalcitrant fractions of these pools. If verified from a larger number of lakes our results could have important general implications.  相似文献   

17.
A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42?) dynamics under drought conditions has been revealed from analysis of a 10‐year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House‐Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4‐weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>?25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42?, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought‐induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42? during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought‐induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.  相似文献   

18.
Dissolved organic carbon (DOC) and total and inorganic nitrogen and phosphorus concentrations were determined over 3 years in headwater streams draining two adjacent catchments. The catchments are currently under different land use; pasture/grazing vs plantation forestry. The objectives of the work were to quantify C and nutrient export from these landuses and elucidate the factors regulating export. In both catchments, stream water dissolved inorganic nutrient concentrations exhibited strong seasonal variations. Concentrations were highest during runoff events in late summer and autumn and rapidly declined as discharge increased during winter and spring. The annual variation of stream water N and P concentrations indicated that these nutrients accumulated in the catchments during dry summer periods and were flushed to the streams during autumn storm events. By contrast, stream water DOC concentrations did not exhibit seasonal variation. Higher DOC and NO3 concentrations were observed in the stream of the forest catchment, reflecting greater input and subsequent breakdown of leaf-litter in the forest catchment. Annual export of DOC was lower from the forested catchment due to the reduced discharge from this catchment. In contrast however, annual export of nitrate was higher from the forest catchment suggesting that there was an additional NO3 source or reduction of a NO3 sink. We hypothesize that the denitrification capacity of the forested catchment has been significantly reduced as a consequence of increased evapotranspiration and subsequent decrease in streamflow and associated reduction in the near stream saturated area.  相似文献   

19.
Forest fire dramatically affects the carbon storage and underlying mechanisms that control the carbon balance of recovering ecosystems. In western North America where fire extent has increased in recent years, we measured carbon pools and fluxes in moderately and severely burned forest stands 2 years after a fire to determine the controls on net ecosystem productivity (NEP) and make comparisons with unburned stands in the same region. Total ecosystem carbon in soil and live and dead pools in the burned stands was on average 66% that of unburned stands (11.0 and 16.5 kg C m−2, respectively, P<0.01). Soil carbon accounted for 56% and 43% of the carbon pools in burned and unburned stands. NEP was significantly lower in severely burned compared with unburned stands (P<0.01) with an increasing trend from −125±44 g C m−2 yr−1 (±1 SD) in severely burned stands (stand replacing fire), to −38±96 and +50±47 g C m−2 yr−1 in moderately burned and unburned stands, respectively. Fire of moderate severity killed 82% of trees <20 cm in diameter (diameter at 1.3 m height, DBH); however, this size class only contributed 22% of prefire estimates of bole wood production. Larger trees (> 20 cm DBH) suffered only 34% mortality under moderate severity fire and contributed to 91% of postfire bole wood production. Growth rates of trees that survived the fire were comparable with their prefire rates. Net primary production NPP (g C m−2 yr−1, ±1 SD) of severely burned stands was 47% of unburned stands (167±76, 346±148, respectively, P<0.05), with forb and grass aboveground NPP accounting for 74% and 4% of total aboveground NPP, respectively. Based on continuous seasonal measurements of soil respiration in a severely burned stand, in areas kept free of ground vegetation, soil heterotrophic respiration accounted for 56% of total soil CO2 efflux, comparable with the values of 54% and 49% previously reported for two of the unburned forest stands. Estimates of total ecosystem heterotrophic respiration (Rh) were not significantly different between stand types 2 years after fire. The ratio NPP/Rh averaged 0.55, 0.85 and 1.21 in the severely burned, moderately burned and unburned stands, respectively. Annual soil CO2 efflux was linearly related to aboveground net primary productivity (ANPP) with an increase in soil CO2 efflux of 1.48 g C yr−1 for every 1 g increase in ANPP (P<0.01, r2= 0.76). There was no significant difference in this relationship between the recently burned and unburned stands. Contrary to expectations that the magnitude of NEP 2 years postfire would be principally driven by the sudden increase in detrital pools and increased rates of Rh, the data suggest NPP was more important in determining postfire NEP.  相似文献   

20.
Organic and inorganic carbon (C) fluxes transported by water were evaluated for dominant hydrologic flowpaths on two adjacent headwater catchments in the Brazilian Amazon with distinct soils and hydrologic responses from September 2003 through April 2005. The Ultisol-dominated catchment produced 30% greater volume of storm-related quickflow (overland flow and shallow subsurface flow) compared to the Oxisol-dominated catchment. Quickflow fluxes were equivalent to 3.2 ± 0.2% of event precipitation for the Ultisol catchment, compared to 2.5 ± 0.3% for the Oxisol-dominated watershed (mean response ±1 SE, n = 27 storms for each watershed). Hydrologic responses were also faster on the Ultisol watershed, with time to peak flow occurring 10 min earlier on average as compared to the runoff response on the Oxisol watershed. These different hydrologic responses are attributed primarily to large differences in saturated hydraulic conductivity (K s). Overland flow was found to be an important feature on both watersheds. This was evidenced by the response rates of overland flow detectors (OFDs) during the rainy season, with overland flow intercepted by 54 ± 0.5% and 65 ± 0.5% of OFDs for the Oxisol and Ultisol watersheds respectively during biweekly periods. Small volumes of quickflow correspond to large fluxes of dissolved organic C (DOC); DOC concentrations of the hydrologic flowpaths that comprise quickflow are an order of magnitude higher than groundwater flowpaths fueling base flow (19.6 ± 1.7 mg l−1 DOC for overland flow and 8.8 ± 0.7 mg l−1 DOC for shallow subsurface flow versus 0.50 ± 0.04,mg l−1 DOC in emergent groundwater). Concentrations of dissolved inorganic C (DIC, as dissolved CO2–C plus HCO3–C) in groundwater were found to be an order of magnitude greater than quickflow DIC concentrations (21.5 mg l−1 DIC in emergent groundwater versus 1.1 mg l−1 DIC in overland flow). The importance of deeper flowpaths in the transport of inorganic C to streams is indicated by the 40:1 ratio of DIC:DOC for emergent groundwater. Dissolved CO2–C represented 92% of DIC in emergent groundwater. Results from this study illustrate a highly dynamic and tightly coupled linkage between the C cycle and the hydrologic cycle for both Ultisol and Oxisol landscapes: organic C fluxes strongly tied to flowpaths associated with quickflow, and inorganic C (particularly dissolved CO2) transported via deeper flowpaths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号