首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete nucleotide sequences from the mitochondrial cytochrome b gene (1143 bp) were used to investigate the phylogenetic relationships among the native rodents of Madagascar. Specifically, this study examines whether the nine genera of nesomyines form a monophyletic group relative to other Old World murids. All nine of the nesomyine genera, including multiple individuals from 15 of the 21 described species, were included in the analysis, and their monophyly was assessed relative to the murid subfamilies Mystromyinae, Petromyscinae, Dendromurinae, Cricetomyinae, Murinae, Rhizomyinae, and Calomyscinae. Phylogenetic analysis of the resulting 95 taxa and 540 characters resulted in 502 equally parsimonious cladograms. The strict consensus tree weakly refutes the monophyly of Nesomyinae and suggests that the Malagasy rodents form a clade with dendromurines (as represented by Steatomys ) and the African rhizomyine Tachyoryctes . The cladogram strongly refutes the association of the South African genus Mystromys with the Malagasy genera and suggests that Petromyscus and Mystromys form a monophyletic group. We provide the first explicitly phylogenetic scenario for the biogeographic history of nesomyine rodents. Our phylogenetic hypothesis indicates: (1) rodents invaded Madagascar only once, (2) they came from Asia not from Africa as is commonly assumed, and (3) there was a secondary invasion of rodents from Madagascar into Africa.  相似文献   

2.
The relationships of Nesomyinae, a group of murid rodents endemic to the island of Madagascar, were investigated with two comparative molecular approaches. Compared to those of other muroid rodents representing Murinae, Cricetinae, Cricetomyinae. Arvicolinae, and Sigmodontinae, complete sequences of the 12S rRNA mitochondrial gene suggest that the Malagasy nesomyinesMacrotarsomys andNesomys are monophyletic and that their sister-group among the taxa analyzed isCricetomys. A limited series of DNA/DNA hybridization experiments extends these observations to a third nesomyine genus,Eliurus, and a second cricetomyine taxon,Saccostomus. By relating the amounts of overall genomic divergence with geological time as calibrated by theMus/Rattus dichotomy estimated at 12–14 My, the oldest within-Nesomyinae dichotomy is estimated to be 10.8 to 12.6 My. Thus, these three genera of Malagasy nesomyine rodents appear to be a rather ancient offshoot from African ancestors whose Recent relatives are Cricetomyinae. This preliminary observation should be confirmed by sampling additional genera of nesomyines and additional representatives for other subfamilies of African muroids.  相似文献   

3.
4.
5.
The rove beetle subtribe Xanthopygina (Coleoptera: Staphylinidae: Staphylininae: Staphylinini) is a species‐rich group of 27 neotropical genera that contains some of the largest and most brightly coloured of all staphylinid beetles. The monophyly of the subtribe has never been tested before, using a large dataset of taxa and genes. Bayesian and maximum likelihood analyses are used on individual genes (COI, 28S rDNA, wingless, arginine kinase, CAD and topoisomerase I) and the partitioned concatenated dataset to test for monophyly and examine the relationships among Xanthopygina genera. Xanthopygina (excluding Philothalpus) are shown to be a monophyletic group with strong support values. The genus Philothalpus is removed from Xanthopygina and placed in the tribe Staphylinini as incertae sedis. Four distinct clades of Xanthopygina genera are recognized. The origin of Xanthopygina is hypothesized to be in the Late Cretaceous or later and the origin of myrmecophilous adaptations is discussed.  相似文献   

6.
Dung beetle species belonging to the worldwide tribe Canthonini (Scarabaeidae) and occurring in Madagascar are all endemic to that island. The Malagasy Canthonini form three lineages, one of which is the group Longitarsi that includes five genera. The phylogenetic relationships of Malagasy Canthonini are not fully resolved and only few species of Longitarsi have been included in previous studies. Here we infer the phylogenetic relationships within the Longitarsi group using molecular data and together with morphological examination revise the systematics of the group. The five genera of the Longitarsi group form one monophyletic clade and thus we suggest the synonymization of the younger genera Sikorantus, Phacosomoides, Madaphacosoma and Aleiantus; with the oldest genus belonging to this clade Epactoides. We describe two new species: Epactoides jounii sp. n and Epactoides mangabeensis sp. n. Most of the species of Longitarsi inhabit the eastern rainforests, with very low local species diversity and highly restricted geographical ranges. In the group Longitarsi four species are wingless. The loss of wings has evolved at least twice, at high altitude along the mountain range.  相似文献   

7.
The biodiversity and endemism of Madagascar are among the most extraordinary and endangered in the world. This includes the island’s freshwater biodiversity, although detailed knowledge of the diversity, endemism, and biogeographic origin of freshwater invertebrates is lacking. The aquatic immature stages of mayflies (Ephemeroptera) are widely used as bio-indicators and form an important component of Malagasy freshwater biodiversity. Many species are thought to be microendemics, restricted to single river basins in forested areas, making them particularly sensitive to habitat reduction and degradation. The Heptageniidae are a globally diverse family of mayflies (>500 species) but remain practically unknown in Madagascar except for two species described in 1996. The standard approach to understanding their diversity, endemism, and origin would require extensive field sampling on several continents and years of taxonomic work followed by phylogenetic analysis. Here we circumvent this using museum collections and freshly collected individuals in a combined approach of DNA taxonomy and phylogeny. The coalescent-based GMYC analysis of DNA barcode data (mitochondrial COI) revealed 14 putative species on Madagascar, 70% of which were microendemics. A phylogenetic analysis that included African and Asian species and data from two mitochondrial and four nuclear loci indicated the Malagasy Heptageniidae are monophyletic and sister to African species. The genus Compsoneuria is shown to be paraphyletic and the genus Notonurus is reinstalled for African and Malagasy species previously placed in Compsoneuria. A molecular clock excluded a Gondwanan vicariance origin and instead favoured a more recent overseas colonization of Madagascar. The observed monophyly and high microendemism highlight their conservation importance and suggest the DNA-based approach can rapidly provide information on the diversity, endemism, and origin of freshwater biodiversity. Our results underline the important role that museum collections can play in molecular studies, especially in critically endangered biodiversity hotspots like Madagascar where entire species or populations may go extinct very quickly.  相似文献   

8.
The phylogenetic relationships of the Timaliidae (babblers) and Sylviidae (warblers) have long challenged ornithologists. We focus here on three Malagasy genera currently assigned to the Timaliidae, Mystacornis, Oxylabes, and Neomixis, and on their relationships with other babblers and warblers using the sequences of two mitochondrial genes (cytochrome b and 16S rRNA). Maximum parsimony analyses show that the Malagasy “babblers” are not related to any of the other African and Asian babblers. The genus Mystacornis is neither a babbler nor a warbler. The other Malagasy “babblers” are members of warbler groups (the monophyly of the Sylviidae is not demonstrated). Oxylabes madagascariensis and Hartertula flavoviridis (we recognize Hartertula as a genus for the species flavoviridis, previously Neomixis flavoviridis) constitute, with two presumed sylviine taxa, Thamnornis chloropetoides and Cryptosylvicola randrianasoloi, a warbler radiation endemic to the island of Madagascar. The other Neomixis species (tenella, striatigula, and viridis) belong to another warbler group comprising cisticoline taxa. These results show that the Timaliidae did not disperse to Madagascar. Rather, the island has been colonized, independently, by at least two clades of warblers, probably originating from Africa, where the Sylviidae radiation has been the most extensive.  相似文献   

9.
The phylogeny of the temperate Gondwanan harvestman family Pettalidae is investigated by means of a new morphological matrix of 45 characters, and DNA sequence data from five markers, including two nuclear ribosomal genes (18S rRNA and 28S rRNA), one nuclear protein coding gene (histone H3), and two mitochondrial genes–one protein coding (cytochrome c oxidase subunit I) and one ribosomal (16S rRNA). Phylogenetic analyses using an array of homology schemes (dynamic and static), criteria (parsimony and maximum likelihood), and sampling strategies (optimal trees versus Bayesian phylogenetics) all agree on the monophyly of Pettalidae as well as several of its subclades, each of which is restricted to a modern landmass. While most genera as traditionally defined are monophyletic, Rakaia and Neopurcellia, distributed across Queensland (Australia) and New Zealand, are not. Instead, the species from Queensland, previously described under three genera, constitute a well‐supported clade, suggesting that in this case biogeography prevails over traditional taxonomy. A taxonomic emendation of the genera from Queensland and New Zealand is presented, and the new genus Aoraki is erected to include the species of the New Zealand denticulata group. A biogeographical hypothesis of the relationships of the former temperate Gondwana landmasses (with the exception of Madagascar) is presented, although ambiguity in the deep nodes of the pettalid tree renders such inference provisional. The data suggest that neither the South African fauna, the New Zealand fauna nor the Australian fauna is monophyletic but instead monophyly is found at smaller geographic scales (e.g., Western Australia, Queensland, NE South Africa). © The Willi Hennig Society 2007.  相似文献   

10.
The phylogeny of the genus Cynanchum s. str. is studied using cpDNA spacers and ITS. Morphological, anatomical and latex triterpenoid data are interpreted in light of the molecular results, and discrepancies are discussed. Vegetative characters are better indicators of relationship than floral characters, especially corona characters. The monophyly of all Malagasy species and, nested within the latter, of all stem-succulent taxa is ascertained and the genera Folotsia, Karimbolea, Platykeleba and Sarcostemma are subsumed under Cynanchum. One African species, C. galgalense, is excluded from Cynanchum.  相似文献   

11.
Nagy, Z. T., Glaw, F. & Vences, M. (2010) Systematics of the snake genera Stenophis and Lycodryas from Madagascar and the Comoros. —Zoologica Scripta, 39, 426–435. Arboreal snakes belonging to the pseudoxyrhophiine genus Stenophis inhabit Madagascar but despite their spectacular appearance, surprisingly little is known about their natural history and systematics. Nonetheless, a close phylogenetic affinity of the genera Stenophis and Lycodryas (the latter genus currently includes a single species from the Comoros) has been hypothesized. Based on recent molecular genetic data, however, the monophyly of Stenophis was challenged. This study aimed at a systematic analysis and taxonomic revision of the genera Stenophis and Lycodryas. On the basis of new molecular genetic and morphological data and analyses, we propose to accommodate these snakes in three monophyletic genera: Lycodryas, Phisalixella and Parastenophis, and to consider Stenophis as a junior synonym of Lycodryas. In the new generic arrangement, the genera can also be well distinguished by morphological characters. On the specific level, Phisalixella tulearensis is resurrected and indications of further, undescribed taxa are revealed.  相似文献   

12.
13.
14.
A 487-bp fragment of the mitochondrial 16S rRNA gene was sequenced in 26 species of the circumtropical lizard genus Mabuya and used to analyze phylogenetic relationships within the genus. The species from Africa and Madagascar formed a monophyletic group relative to the included Asian and South American taxa. The Malagasy species included (M. elegans, M. cf. dumasi, and M. comorensis) did not appear as a monophylum. Combined and separate analysis of the 16S data and additional sequences of the mitochondrial 12S rRNA, ND4, and cytochrome b genes (a total of 2255 bp) in one Asian, two Malagasy, and two African species also did not result consistently in a monophyletic grouping of the Malagasy taxa. However, a monophylum containing African and Malagasy taxa was strongly supported by the combined analysis. These preliminary results indicate that Mabuya probably colonized Madagascar from Africa through the Mozambique Channel.  相似文献   

15.
Phylogenetic relationships of the Malagasy and South Asian cichlids are investigated using nucleotide characters from two mitochondrial genes, a 544 bp region of the large ribosomal subunit (16S) and a 649 bp region of cytochrome c oxidase subunit I (COI). This is the first molecular analysis to include a thorough taxonomic sampling of all Malagasy-South Asian genera, and a near complete taxonomic inventory of all valid species. Parsimony analysis of the combined data set (1193 aligned nucleotide positions) results in a single, completely resolved phylogenetic hypothesis. Results of this analysis, and that based on more comprehensive taxonomic sampling across Cichlidae for 16S alone (554 bp for 73 taxa), indicate that the Malagasy cichlids are paraphyletic, whereas the Malagasy and South Asian cichlids comprise a monophyletic group. In both analyses, the African and Neotropical assemblages are monophyletic. The Malagasy-South Asian cichlids are not recovered as plesiomorphic members of the family in either analysis. Two major clades are recovered within the Malagasy-South Asian assemblage and given subfamilial rank, Etroplinae, comprising Paretroplus (Madagascar) and Etroplus (southern India and Sri Lanka), and Ptychochrominae, comprising Ptychochromis, Ptychochromoides, and Oxylapia, all endemic Malagasy genera. Placement of the endemic Malagasy genus Paratilapia is equivocal depending on the gene fragment(s) analyzed. Inter- and intrageneric relationships within Ptychochrominae and Etroplinae are presented and discussed. The hypothesis of relationships for Cichlidae based on nucleotide characters from 16S alone, arguably the most comprehensive and broadly sampled data set across all major geographic assemblages to date, is congruent with prevailing hypotheses regarding the sequence of Gondwanan fragmentation and a vicariance scenario to explain the current distribution of cichlid fishes.  相似文献   

16.
Phylogenetic relationships of the family Vangidae and representatives of several other passeriform families were inferred from 882 base positions of mitochondrial DNA sequences of 12S and 16S rRNA genes. Results indicated the monophyly of the Vangidae, which includes the genus Tylas, hitherto often placed in the family Pycnonotidae. Our results also revealed the Malagasy endemic Newtonia, a genus never previously assigned to the Vangidae, to be a member of this family. These results suggest the occurrence of an extensive in situ radiation of this family within Madagascar, and that the extant high diversity of this family is not the result of multiple colonizations from outside. The extremely high morphological and ecological diversification of the family seems to have been enhanced through the use and ultimate occupancy of vacant niches in this island. Received: 8 September 2000 / Accepted: 13 February 2001  相似文献   

17.
Phylogenetic relationships among members of the family Gyrinidae (Coleoptera: Adephaga) were inferred from analysis of 42 morphological characters and DNA sequence data from the genes 12S rRNA, cytochrome c oxidase I and II, elongation factor 1 alpha (2 different copies) and histone III. Eighty‐nine species of Gyrinidae were included representing all known subfamilies, tribes and genera. Outgroups include species from Noteridae, Paelobiidae and Dytiscidae. Analyses include parsimony analysis, and partitioned time‐free and relaxed‐clock Bayesian analyses of the combined data using reversible‐jump MCMC to simultaneously integrate over all possible 4 × 4 nucleotide substitution models. Analyses resulted in conflicting topologies between the combined parsimony and Bayesian analyses on the one hand, and the relaxed‐clock analysis on the other. The marginal likelihoods of competing models were calculated with stepping‐stone sampling and used in a Bayes factor test, which, along with arguments from morphology, supported the topology generated by the relaxed‐clock analysis. This phylogenetic hypothesis is adopted to revise the higher classification of Gyrinidae. Major taxonomic conclusions include: (i) monophyletic Gyrinidae, (ii) the Nearctic Spanglerogyrinae Folkerts (with one species, Spanglerogyrus albiventris Folkerts) sister to all other Gyrinidae, (iii) the Madagascar endemic Heterogyrinae Brinck stat. n. (with one species, Heterogyrus milloti Legros) sister to all Gyrinidae except Spanglerogyrinae, (iv) monophyletic Gyrininae Latreille including three monophyletic tribes with the following relationship: Orectochilini Régimbart + (Gyrinini Latreille + Enhydrini Régimbart), (v) monophyletic Orectochilini comprising four monophyletic genera with the following relationships: (Gyretes Brullé + Patrus Aubé stat. n. ) + (Orectogyrus Régimbart + Orectochilus Dejean), (vi) monophyletic Gyrinini comprising three genera with the following relationships: Gyrinus Geoffroy + (Metagyrinus Brinck + Aulonogyrus Motschulsky), each monophyletic except Metagyrinus with only one included species and not tested for monophyly, and (vii) monophyletic Enhydrini comprising five genera with the following relationships: (Porrorhynchus Laporte + Dineutus MacLeay) + (Enhydrus Laporte + (Andogyrus Ochs + Macrogyrus Régimbart)), each monophyletic except Porrorhynchus, Enhydrus and Andogyrus each with one included species and untested for monophyly. Each subfamily, tribe and genus is diagnosed and discussed. The female reproductive tract of each group is presented, illustrated and discussed with respect to the phylogenetic conclusions.  相似文献   

18.
Eulophiinae comprise c. 270 species divided into nine genera, with the species‐rich terrestrial genus Eulophia representing 60% of this diversity. Remarkable ecological and morphological variation, and an absence of clear diagnostic characters have led to uncertain generic delimitation in the subtribe. Using a combination of new and previously published DNA sequences, we created a dataset representing 122 taxa and all genera of Eulophiinae and inferred a complete generic‐level phylogeny for the subtribe for the first time. Our sampling focused on analysing Afro‐Madagascan taxa and therefore included representatives of the four mostly epiphytic Madagascan endemic genera, the near Madagascan endemic Oeceoclades and additional sampling of the predominantly African genera Eulophia and Orthochilus. In total, 104 new accessions were collected for this study in Zambia and Madagascar (88 of which represented 36 Eulophia spp. and 12 Oeceoclades spp.). Independent plastid and nuclear phylogenetic trees were inferred using Bayesian and maximum‐likelihood algorithms, which recovered strong support for a monophyletic Eulophiinae, the first‐branching position of the mostly epiphytic Madagascan endemic genera, and increased support for recognition of the terrestrial genera Oeceoclades and Orthochilus. Eulophia, the largest genus in the group, was recovered as polyphyletic, but with implications for its classification and that of Geodorum, that was nested in the main Eulophia clade. Although relationships among several genera were resolved with some confidence, the positions of the South African endemic genus Acrolophia and the epiphytic Madagascan endemic Paralophia require further work. Taxon sampling of Asian Eulophia is a priority for future work on the systematics of this group. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 43–56.  相似文献   

19.
Verrucariaceae are a family of mostly crustose lichenized ascomycetes colonizing various habitats ranging from marine and fresh water to arid environments. Phylogenetic relationships among members of the Verrucariaceae are mostly unknown and the current morphology-based classification has never been confronted to molecular data. A multilocus phylogeny (nuLSU, nuSSU and RPB1) was reconstructed for 83 taxa representing all main genera of this family to provide a molecular phylogenetic framework necessary to assess the current morphology-based classification. Four main well-supported monophyletic groups were recovered, one of which contains seven robust monophyletic subgroups. Most genera, as traditionally delimited, were not monophyletic. A few taxonomic changes are proposed here to reconcile the morphology-based classification with the molecular phylogeny (Endocarpon diffractellum comb. nov., Heteroplacidium fusculum comb. nov., and Bagliettoa marmorea comb. nov.). Ancestral state reconstructions show that the most recent common ancestor of the Verrucariaceae was most likely crustose with a weakly differentiated upper cortex, simple ascospores, and hymenium free of algae. As shown in this study, the use of symplesiomorphic traits to define Verrucaria, the largest and type genus for the Verrucariaceae, as well as the non monophyly of the genera Polyblastia, Staurothele and Thelidium, explain most of the discrepancies between the current classification based on morphological similarity and a classification using monophyly as a grouping criterion.  相似文献   

20.
The phylogeny of the Giant Pill-Millipedes, order Sphaerotheriida, is investigated using a new morphological character matrix comprising 89 characters. The majority of these characters are employed for the first time in millipedes. All trees obtained agree on the monophyletic status of the Sphaerotheriida and several of its tribes, each restricted to a modern land mass. The species from Madagascar displaying island gigantism do not form a monophyletic group. The classic division of Giant Pill-Millipedes into two families, Sphaerotheriidae and Zephronidae, was not reflected in the analysis. The genus Procyliosoma is the sister-group to all other Sphaerotheriida, rendering the family Sphaerotheriidae paraphyletic. A new family-level classification of Giant Pill-Millipedes, based on the current phylogeny, is introduced. The new family Procyliosomatidae contains only the genus Procyliosoma , distributed in Australia and New Zealand. The family Zephronidae remains unchanged, while the family Sphaerotheriidae now incorporates only the African Giant Pill-Millipede genera. All genera from southern India and Madagascar form a monophyletic group and are placed in the new family Arthrosphaeridae. The Malagasy genus Sphaeromimus is more closely related to the Indian Arthrosphaera species than to other genera from Madagascar. A biogeographical analysis identifies the group as a Gondwana taxon (with a notable absence from South America). The current phylogeny of Giant Pill-Millipede families mirrors perfectly the suggested break-up of Gondwana fragments 160–90 Ma. No evidence for a dispersal event could be found, highlighting the importance of Giant Pill-Millipedes as a potential model taxon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号