首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periplasmic proteins were obtained from control cells and salt-adapted cells of the cyanobacterium Synechocystis sp. PCC 6803 using the method of cold osmotic shock. Two of these proteins (PP 1, apparent mol. mass 27.6 kDa, and PP 3, apparent mol. mass 39.9 kDa) were accumulated in high amounts in the periplasm of salt-adapted cells, while the major periplasmic protein (PP 2, apparent mol. mass 36.0 kDa) was accumulated independently from salt. After isolation from gels and partial sequencing, the proteins could be assigned to proteins deduced from the complete genome sequence of Synechocystis. Neither salt-induced periplasmic proteins (PP 1, Slr0924 and PP 3, Slr1485) exhibited sequence similarity to proteins of known function from databases. The major protein (PP 2-Slr0513) showed significant sequence similarities to iron-binding proteins. All proteins included typical leader sequences at their N-terminus. Received: 21 September 1998 / Accepted: 17 December 1998  相似文献   

2.
3.
Cysteine dithiol/disulphide exchange forms the molecular basis for regulation of a wide variety of enzymatic activities and for transduction of cellular signals. Thus, the search for proteins with reactive, accessible cysteines is expected to contribute to the unravelling of new molecular mechanisms for enzyme regulation and signal transduction. Several methods have been designed for this purpose taking advantage of the interactions between thioredoxins and their protein substrates. Thioredoxins comprise a family of redox-active enzymes, which catalyse reduction of protein disulphides and sulphenic acids. Due to the inherent practical difficulties associated with studies of membrane proteins these have been largely overlooked in the many proteomic studies of thioredoxin-interacting proteins. In the present work, we have developed a procedure to isolate membrane proteins interacting with thioredoxin by binding in situ to a monocysteinic His-tagged thioredoxin added directly to the intact membranes. Following fractionation and solubilisation of the membranes, thioredoxin target proteins were isolated by Ni-affinity chromatography and 2-DE SDS-PAGE under nonreducing/reducing conditions. Applying this method to total membranes, including thylakoid and plasma membranes, from the cyanobacterium Synechocystis sp. PCC 6803 we have identified 50 thioredoxin-interacting proteins. Among the 38 newly identified thioredoxin targets are the ATP-binding subunits of several transporters and members of the AAA-family of ATPases.  相似文献   

4.
Hydrolysis of plant biomass generates a mixture of simple sugars that is particularly rich in glucose and xylose. Fermentation of the released sugars emits CO2 as byproduct due to metabolic inefficiencies. Therefore, the ability of a microbe to simultaneously convert biomass sugars and photosynthetically fix CO2 into target products is very desirable. In this work, the cyanobacterium, Synechocystis 6803, was engineered to grow on xylose in addition to glucose. Both the xylA (xylose isomerase) and xylB (xylulokinase) genes from Escherichia coli were required to confer xylose utilization, but a xylose-specific transporter was not required. Introduction of xylAB into an ethylene-producing strain increased the rate of ethylene production in the presence of xylose. Additionally, introduction of xylAB into a glycogen-synthesis mutant enhanced production of keto acids. Isotopic tracer studies found that nearly half of the carbon in the excreted keto acids was derived from the engineered xylose metabolism, while the remainder was derived from CO2 fixation.  相似文献   

5.
To advance our knowledge of the model cyanobacterium Synechocystis sp. PCC 6803 we investigated the three-dimensional organization of the cytoplasm using standard transmission electron microscopy and electron tomography. Electron tomography allows a resolution of ~5 nm in all three dimensions, superior to the resolution of most traditional electron microscopy, which is often limited in part by the thickness of the section (70 nm). The thylakoid membrane pairs formed layered sheets that followed the periphery of the cell and converged at various sites near the cytoplasmic membrane. At some of these sites, the margins of thylakoid membranes associated closely along the external surface of rod-like structures termed thylakoid centers, which sometimes traversed nearly the entire periphery of the cell. The thylakoid membranes surrounded the central cytoplasm that contained inclusions such as ribosomes and carboxysomes. Lipid bodies were dispersed throughout the peripheral cytoplasm and often juxtaposed with cytoplasmic and thylakoid membranes suggesting involvement in thylakoid maintenance or biogenesis. Ribosomes were numerous and mainly located throughout the central cytoplasm with some associated with thylakoid and cytoplasmic membranes. Some ribosomes were attached along internal unit-membrane-like sheets located in the central cytoplasm and appeared to be continuous with existing thylakoid membranes. These results present a detailed analysis of the structure of Synechocystis sp. PCC 6803 using high-resolution bioimaging techniques and will allow future evaluation and comparison with gene-deletion mutants.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
As a means to improve carbon uptake in the cyanobacterium Synechocystis sp. strain PCC6803, we engineered strains to contain additional inducible copies of the endogenous bicarbonate transporter BicA, an essential component of the CO2-concentrating mechanism in cyanobacteria. When cultured under atmospheric CO2 pressure, the strain expressing extra BicA transporters (BicA+ strain) grew almost twice as fast and accumulated almost twice as much biomass as the control strain. When enriched with 0.5% or 5% CO2, the BicA+ strain grew slower than the control but still showed a superior biomass production. Introducing a point mutation in the large C-terminal cytosolic domain of the inserted BicA, at a site implicated in allosteric regulation of transport activity, resulted in a strain (BicA+(T485G) strain) that exhibited pronounced cell aggregation and failed to grow at 5% CO2. However, the bicarbonate uptake capacity of the induced BicA+(T485G) was twice higher than for the wild-type strain. Metabolic analyses, including phenotyping by synchrotron-radiation Fourier transform Infrared spectromicroscopy, scanning electron microscopy, and lectin staining, suggest that the excess assimilated carbon in BicA+ and BicA+(T485G) cells was directed into production of saccharide-rich exopolymeric substances. We propose that the increased capacity for CO2 uptake in the BicA+ strain can be capitalized on by re-directing carbon flux from exopolymeric substances to other end products such as fuels or high-value chemicals.  相似文献   

7.
In the present economy, difficulties to access energy sources are real drawbacks to maintain our current lifestyle. In fact, increasing interests have been gathered around efficient strategies to use energy sources that do not generate high CO2 titers. Thus, science-funding agencies have invested more resources into research on hydrogen among other biofuels as interesting energy vectors. This article reviews present energy challenges and frames it into the present fuel usage landscape. Different strategies for hydrogen production are explained and evaluated. Focus is on biological hydrogen production; fermentation and photon-fuelled hydrogen production are compared. Mathematical models in biology can be used to assess, explore and design production strategies for industrially relevant metabolites, such as biofuels. We assess the diverse construction and uses of genome-scale metabolic models of cyanobacterium Synechocystis sp. PCC6803 to efficiently obtain biofuels. This organism has been studied as a potential photon-fuelled production platform for its ability to grow from carbon dioxide, water and photons, on simple culture media. Finally, we review studies that propose production strategies to weigh this organism’s viability as a biofuel production platform. Overall, the work presented in this review unveils the industrial capabilities of cyanobacterium Synechocystis sp. PCC6803 to evolve interesting metabolites as a clean biofuel production platform.  相似文献   

8.
Protein lysine methylation is a prevalent post-translational modification (PTM) and plays critical roles in all domains of life. However, its extent and function in photosynthetic organisms are still largely unknown. Cyanobacteria are a large group of prokaryotes that carry out oxygenic photosynthesis and are applied extensively in studies of photosynthetic mechanisms and environmental adaptation. Here we integrated propionylation of monomethylated proteins, enrichment of the modified peptides, and mass spectrometry (MS) analysis to identify monomethylated proteins in Synechocystis sp. PCC 6803 (Synechocystis). Overall, we identified 376 monomethylation sites in 270 proteins, with numerous monomethylated proteins participating in photosynthesis and carbon metabolism. We subsequently demonstrated that CpcM, a previously identified asparagine methyltransferase in Synechocystis, could catalyze lysine monomethylation of the potential aspartate aminotransferase Sll0480 both in vivo and in vitro and regulate the enzyme activity of Sll0480. The loss of CpcM led to decreases in the maximum quantum yield in primary photosystem II (PSII) and the efficiency of energy transfer during the photosynthetic reaction in Synechocystis. We report the first lysine monomethylome in a photosynthetic organism and present a critical database for functional analyses of monomethylation in cyanobacteria. The large number of monomethylated proteins and the identification of CpcM as the lysine methyltransferase in cyanobacteria suggest that reversible methylation may influence the metabolic process and photosynthesis in both cyanobacteria and plants.  相似文献   

9.
The plasma membrane of a cyanobacterial cell is crucial as barrier against the outer medium. It is also an energy-transducing membrane as well as essential for biogenesis of cyanobacterial photosystems and the endo-membrane system. Previously we have identified 57 different proteins in the plasma membrane of control cells from Synechocystis sp. strain PCC6803. In the present work, proteomic screening of salt-stress proteins in the plasma membrane resulted in identification of 109 proteins corresponding to 66 different gene products. Differential and quantitative analyses of 2-DE profiles of plasma membranes isolated from both control and salt-acclimated cells revealed that twenty proteins were enhanced/induced and five reduced during salt stress. More than half of the enhanced/induced proteins were periplasmic binding proteins of ABC-transporters or hypothetical proteins. Proteins that exhibited the highest enhancement during salt stress include FutA1 (Slr1295) and Vipp1 (Sll0617), which have been suggested to be involved in protection of photosystem II under iron deficiency and in thylakoid membrane formation, respectively. Other salt-stress proteins were regulatory proteins such as PII protein, LrtA, and a protein that belongs to CheY subfamily. The physiological significance of the identified salt-stress proteins in the plasma membrane is discussed integrating our current knowledge on cyanobacterial stress physiology.  相似文献   

10.
The phycobilisome (PBS) is a giant highly-structured pigment-protein antenna of cyanobacteria and red algae. PBS is composed of the phycobiliproteins and several linker polypeptides. The large core-membrane linker protein (LCM or ApcE) influences many features and functions of PBS and consists of several domains including the chromophorylated PB-domain. Being homologous to the phycobiliprotein α-subunits this domain includes a so-called PB-loop insertion whose functions are still unknown. We have created the photoautotrophic mutant strain of the cyanobacterium Synechocystis sp. PCC 6803 with lacking PB-loop. Using various spectral techniques we have demonstrated that this mutation does not destroy the PBS integrity and the internal PBS excitation energy transfer pathways. At the same time, the deletion of the PB-loop leads to the decrease of connectivity between the PBS and thylakoid membrane and to the compensatory increase of the relative photosystem II content. Mutation provokes the violation of the thylakoid membranes arrangement, the inability to perform state transitions, and diminishing of the OCP-dependent non-photochemical PBS quenching. In essence, even such a minute mutation of the PBS polypeptide component, like the PB-loop deletion, becomes important for the concerted function of the photosynthetic apparatus.  相似文献   

11.
Bacterial toxin-antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci and mediate plasmid and genomic island maintenance through post-segregational killing mechanisms. TA systems exist in surprisingly high numbers in all prokaryotes, but cyanobacterial TA systems have been only very poorly experimentally characterized so far. Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. As such, cyanobacteria are of high ecological importance and are considered promising for the production of biofuels. Here, we present the molecular characterization of the sll7003/ssl7004 TA system encoded on plasmid pSYSA of the model cyanobacterium Synechocystis sp. PCC 6803 as involving a Mg2+-dependent RNA endonuclease activity targeting single-stranded RNA regions and demonstrate the functionality of four more TA systems encoded on this 100,749-bp plasmid. Furthermore, one additional type I, one additional type II, and three freestanding TA system components are predicted on pSYSA, all of which appear active judged by their expression. By harboring at least seven simultaneously active TA systems, pSYSA appears as the plasmid most strongly selected for among all plasmids studied in this respect thus far. These results point to a high biological relevance of pSYSA, whose coding capacity is 75% devoted to three distinct clustered regularly interspaced short palindromic repeats (CRISPR) systems mediating antiviral defense.  相似文献   

12.
Protein synthesis of the cyanobacterium Synechocystis spec. PCC 6803 decreases after a 684 mM NaCl salt shock. Qualitative changes were observed during the shock and the subsequent adaptation process using one-dimensional polyacrylamide electrophoresis. Proteins of apparent molecular masses of 13.0, 14.2, 16.6, 20.0, 21.0, 23.0, 33.0, 47.0, 52.0, 65.0 and 72.0 kDa are synthesized at enhanced rates after salt stress. The proteins of 14.2, 21.1 and 52.0 kDa are transiently induced during the first hours of the adaptation phase, while the other proteins are also synthesized at enhanced rates in salt-adapted cells. The proteins of 14.2, 23.0, 33.0 and 65.0 kDa are also induced by heat shock (43°C). Heat shock proteins of about 88.0, 75.0, 58.0, 17.5 and 13.8 kDa, in contrast, are induced by heat shock but not by salt. Two-dimensional polyacrylamide electrophoresis showed that the induced salt and heat shock proteins in some cases consisted of isoforms of different isoelectric points.Abbreviations IP isoelectric point - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonyl fluoride  相似文献   

13.
Summary. Among prokaryotes, cyanobacteria are unique in having highly differentiated internal membrane systems. Like other Gram-negative bacteria, cyanobacteria such as Synechocystis sp. strain PCC 6803 have a cell envelope consisting of a plasma membrane, peptidoglycan layer, and outer membrane. In addition, these organisms have an internal system of thylakoid membranes where the electron transfer reactions of photosynthesis and respiration occur. A long-standing controversy concerning the cellular ultrastructures of these organisms has been whether the thylakoid membranes exist inside the cell as separate compartments, or if they have physical continuity with the plasma membrane. Advances in cellular preservation protocols as well as in image acquisition and manipulation techniques have facilitated a new examination of this topic. We have used a combination of electron microscopy techniques, including freeze-etched as well as freeze-substituted preparations, in conjunction with computer-aided image processing to generate highly detailed images of the membrane systems in Synechocystis cells. We show that the thylakoid membranes are in fact physically discontinuous from the plasma membrane in this cyanobacterium. Thylakoid membranes in Synechocystis sp. strain PCC 6803 thus represent bona fide intracellular organelles, the first example of such compartments in prokaryotic cells. Supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Biology, CB1137, Washington University, St. Louis, MO 63130, U.S.A.  相似文献   

14.
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 105 molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.  相似文献   

15.
Solar energy provides the energy input for the biosynthesis of primary and secondary metabolites in plants and other photosynthetic organisms. Some secondary metabolites are high value compounds, and typically their biosynthesis requires the involvement of cytochromes P450s. In this proof of concept work, we demonstrate that the cyanobacterium Synechocystis sp. PCC 6803 is an eminent heterologous host for expression of metabolically engineered cytochrome P450-dependent pathways exemplified by the dhurrin pathway from Sorghum bicolor comprising two membrane bound cytochromes P450s (CYP79A1 and CYP71E1) and a soluble glycosyltransferase (UGT85B1). We show that it is possible to express multiple genes incorporated into a bacterial-like operon by using a self-replicating expression vector in cyanobacteria. We demonstrate that eukaryotic P450s that typically reside in the endoplasmic reticulum membranes can be inserted in the prokaryotic membranes without affecting thylakoid membrane integrity. Photosystem I and ferredoxin replaces the native P450 oxidoreductase enzyme as an efficient electron donor for the P450s both in vitro and in vivo. The engineered strains produced up to 66 mg/L of p-hydroxyphenylacetaldoxime and 5 mg/L of dhurrin in lab-scale cultures after 3 days of cultivation and 3 mg/L of dhurrin in V-shaped photobioreactors under greenhouse conditions after 9 days cultivation. All the metabolites were found to be excreted to the growth media facilitating product isolation.  相似文献   

16.
In order to investigate the metabolic importance of glycine decarboxylase (GDC) in cyanobacteria, mutants were generated defective in the genes encoding GDC subunits and the serine hydroxymethyl-transferase (SHMT). It was possible to mutate the genes for GDC subunits P, T, or H protein in the cyanobacterial model strain Synechocystis sp. PCC 6803, indicating that GDC is not necessary for cell viability under standard conditions. In contrast, the SHMT coding gene was found to be essential. Almost no changes in growth, pigmentation, or photosynthesis were detected in the GDC subunit mutants, regardless of whether or not they were cultivated at ambient or high CO2 concentrations. The mutation of GDC led to an increased glycine/serine ratio in the mutant cells. Furthermore, supplementation of the medium with low glycine concentrations was toxic for the mutants but not for wild type cells. Conditions stimulating photorespiration in plants, such as low CO2 concentrations, did not induce but decrease the expression of the GDC and SHMT genes in Synechocystis. It appears that, in contrast to heterotrophic bacteria and plants, GDC is dispensable for Synechocystis and possibly other cyanobacteria.  相似文献   

17.
The agp gene encoding the ADP-glucose pyrophosphorylase is involved in cyanobacterial glycogen synthesis and glucosylglycerol formation. By in vitro DNA recombination technology, a mutant with partial deletion of agp gene in the cyanobacterium Synechocystis sp. PCC 6803 was constructed. This mutant could not synthesize glycogen or the osmoprotective substance glucosylglycerol. In the mutant cells grown in the medium containing 0.9 M NaCl for 96 h, no glucosylglycerol was detected and the total amount of sucrose was 29 times of that of in wild-type cells. Furthermore, the agp deletion mutant could tolerate up to 0.9 M salt concentration. Our results suggest that sucrose might act as a similar potent osmoprotectant as glucosylglycerol in cyanobacterium Synechocystis sp. PCC 6803.  相似文献   

18.
As phylogenetic ancestors of plant chloroplasts cyanobacteria resemble plastids with respect to lipid and fatty acid composition. These membrane lipids show the typical prokaryotic fatty acid pattern in which the sn-2 position is exclusively esterified by C(16) acyl groups. In the course of de novo glycerolipid biosynthesis this prokaryotic fatty acid pattern is established by the sequential acylation of glycerol-3-phosphate with acyl-ACPs by the activity of different acyltransferases. In silico approaches allowed the identification of putative Synechocystis acyltransferases involved in glycerolipid metabolism. Functional expression studies in Escherichia coli showed that sll1848 codes for a lysophosphatidic acid acyltransferase with a high specificity for 16:0-ACP, whereas slr2060 encodes a lysophospholipid acyltransferase, with a broad acyl-ACP specificity but a strong preference for lysophosphatidyglycerol especially its sn-2 acyl isomer as acyl-acceptor. The generation and analysis of the corresponding Synechocystis knockout mutants revealed that lysophosphatidic acid acyltransferase unlike the lysophospholipid acyltransferase is essential for the vital functions of the cells.  相似文献   

19.
In the complete annotated genome sequences of cyanobacterium Synechocystis sp. PCC 6803, one can find many putative genes for two-component response regulators that include a helix-turn-helix DNA-binding domain. The mRNA level of one of the putative genes, sll1330, was increased by glucose, especially in the presence of light. We successfully disrupted the sll1330 gene by targeted mutagenesis with a spectinomycin resistance cassette. Deltasll1330 could not grow well under light-activated heterotrophic growth conditions. Analyses of the expression of glycolytic genes revealed that the mRNA levels of five glycolytic genes, that is, glk (sll0593), pfkA (sll1196), fbaA (sll0018), gpmB (slr1124), and pk (sll0587), were decreased, and were regulated by Sll1330 under light and glucose-supplemented conditions. The Synechocystis sp. PCC 6803 genome each encodes two isozymes for these five glycolytic genes, suggesting that each of the two isozymes is regulated by Sll1330 at the mRNA level.  相似文献   

20.
Summary The interaction between homologous DNA sequences, distant from each other in the chromosome, was examined in the cyanobacterium Synechocystis PCC 6803. Most of the rbcL gene encoding the large subunit of ribulose bisphosphate carboxylase/oxygenase (Rubisco) was duplicated in the genome by a targeted insertion of a 3-truncated gene copy into the psbA-I locus. Both rbcL genes, in the psbA-I region and at the rbc locus, were non-functional; The former due to the 3 truncation, and the latter due to a deletion in the 5-region (creating a 5 truncation) and a mutation associated with an insertion of the Rhodospirillum rubrum rbc gene, yielding a high-CO2-requiring mutant (cyanorubrum). The 3 and the 5 truncated rbcL genes were linked to chloramphenicol and kanamycin resistance markers, respectively. Decreasing the kanamycin selective pressure concomitantly with exposure of the double resistance mutant to air, resulted in air-growing colonies. Analysis of their genomes, Rubisco proteins, and their ultrastructure revealed: 1) Reconstitution of a full-length cyanobacterial rbcL gene at the rbc locus; 2) simultaneous synthesis of the cyanobacterial (L8S8) and R. rubrum L2) enzymes in meroploids containing both mutated and reconstituted rbcL genes; 3) reappearance of carboxysomes. Our results indicate extensive recombinatorial interactions between the homologous sequences at both loci leading to reconstitution of the cyanobacterial rbcL gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号