首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and aims

Physiological integration can enhance the performance of clonal plants, but whether this differs between ecotypes and whether such difference is underlying their distribution have scarcely been addressed. We aimed to determine whether physiological integration differs between ecotypes and whether an ecotype with a wider distribution shows a greater capacity of physiological integration.

Methods

A garden experiment was conducted with ramet pairs of both ecotypes (grey-green and yellow-green ecotype) of a typical rhizomatous clonal plant, Leymus chinensis, using rhizome connection (connected vs. disconnected) and ecotype as factors. Physiological and biomass features were measured and compared to assess the effects of physiological integration for both ecotypes.

Results

Physiological integration enhanced the maximum net photosynthetic rate, apparent quantum efficiency, respiration rate, water use efficiency, and chlorophyll content of ramets no matter whether they were subject to nutrient-poor or -rich soil, as long as they were connected to other ramets. Moreover, such an effect on photosynthetic capacity and water use efficiency was larger for the grey-green ecotype than for the yellow-green ecotype.

Conclusions

The results suggested that grey-green ecotype has significantly greater capacity of physiological integration than yellow-green ecotype, which was assumed to be one of the underlying mechanisms of the wider distribution of the former in nature.  相似文献   

2.
Gill raker divergence is a general pattern in adaptive radiations of postglacial fish, but few studies have addressed the adaptive significance of this morphological trait in foraging and eco-evolutionary interactions among predator and prey. Here, a set of subarctic lakes along a diversifying gradient of coregonids was used as the natural setting to explore correlations between gill raker numbers and planktivory as well as the impact of coregonid radiation on zooplankton communities. Results from 19 populations covering most of the total gill raker number gradient of the genus Coregonus, confirm that the number of gill rakers has a central role in determining the foraging ability towards zooplankton prey. Both at the individual and population levels, gill raker number was correlated with pelagic niche use and the size of utilized zooplankton prey. Furthermore, the average body size and the abundance and diversity of the zooplankton community decreased with the increasing diversity of coregonids. We argue that zooplankton feeding leads to an eco-evolutionary feedback loop that may further shape the gill raker morphology since natural selection intensifies under resource competition for depleted prey communities. Eco-evolutionary interactions may thus have a central role creating and maintaining the divergence of coregonid morphs in postglacial lakes.  相似文献   

3.
4.
Plants from four populations of Hordeum spontaneum originating in distinct environments of Israel were compared for stress induced phenotypic plasticity. The environments ranged along a gradient of increasing rainfall amount and predictability from low (desert) to moderate (semisteppe batha) to high (Mediterranean grassland and mountain, the latter also experiencing frost stress). The plants were exposed to a set of four treatments: no stress (optimum water and nutrients), water, nutrient and both water and nutrient stress. Plants from the four populations (or ecotypes) exhibited different patterns of plasticity in response to the different stresses (water and nutrients) and in different trait categories (reproductive, fitness and resource allocation). The importance of plasticity in response to water stress appears to decrease, and to nutrient stress appears to increase along the increasing rainfall gradient. The mountain ecotype, growing in an area with high potential productivity (amount of rainfall) but experiencing periodic frosts, was the most plastic among ecotypes in resource allocation under both water and nutrient stress, but exhibited low plasticity in other trait categories. In contrast, the desert ecotype had low plasticity in resource allocation under water stress and the lowest plasticity among the four ecotypes in all trait categories in response to nutrient stress. The ecotype originating in Mediterranean grassland, a predictable and most favourable environment, was highly plastic in fitness and allocation traits in response to low nutrient levels which is likely to occur due to competition in productive environment. We discuss the observed differences in ecotype plasticity as part of their environmentally induced adaptive ‘strategies’. We found no support for the hypothesis that plants originating in environments with greater variation and unpredictability are more plastic. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society 2002, 75 , 301–312.  相似文献   

5.
Determining how environmental conditions contribute to divergence among populations and drive speciation is fundamental to resolving mechanisms and understanding outcomes in evolutionary biology. Postglacial freshwater fish species in the Northern Hemisphere are ideal biological systems to explore the effects of environment on diversification in morphology, ecology, and genetics (ecomorph divergences) within lakes. To date, various environmental factors have been implicated in the presence of multiple ecomorphs within particular lakes or regions. However, concerted evidence for generalizable patterns in environmental variables associated with speciation across geographical regions and across species and genera has been lacking. Here, we aimed to identify key biotic and abiotic factors associated with ecological divergence of postglacial freshwater fish species into multiple sympatric ecomorphs, focusing on species in the well-studied, widespread, and co-distributed genera Gasterosteus, Salvelinus, and Coregonus (stickleback, charr, and whitefish, respectively). We found that the presence of multiple sympatric ecomorphs tended to be associated with increasing lake surface area, maximum depth, and nutrient availability. In addition, predation, competition, and prey availability were suggested to play a role in divergence into multiple ecomorphs, but the effects of biotic factors require further study. Although we identified several environmental factors correlated with the presence of multiple ecomorphs, there were substantial data gaps across species and regions. An improved understanding of these systems may provide insight into both generalizable environmental factors involved in speciation in other systems, and potential ecological and evolutionary responses of species complexes when these variables are altered by environmental change.  相似文献   

6.
7.
Sympatric fish populations observed in many north temperate lakes are among the best models to study the processes of population divergence and adaptive radiation. Despite considerable research on such systems, little is known about the associations between ecological conditions and the extent of ecotypic divergence. In this study, we examined the biotic and abiotic properties of postglacial lakes in which lake whitefish, Coregonus clupeaformis, occur as a derived dwarf ecotype in sympatry with an ancestral normal ecotype. We compared 19 limnological variables between two groups of lakes known from previous studies to harbour sympatric dwarf and normal ecotypes with high and low levels of phenotypic and genetic differentiation respectively. We found clear environmental differences between the two lake groups. Namely, oxygen was the most discriminant variable, where lakes harbouring the most divergent populations were characterized by the greatest hypolimnetic oxygen depletion. These lakes also had lower zooplankton densities and a narrower distribution of zooplantonic prey length. These results suggest that the highest differentiation between sympatric ecotypes occurs in lakes with reduced habitat and prey availability that could increase competition for resources. This in turns supports the hypothesis that parallelism in the extent of phenotypic divergence among sympatric whitefish ecotypes is associated with parallelism in adaptive landscape in terms of differences in limnological characteristics, as well as availability and structure of the zooplanktonic community.  相似文献   

8.
Summary We have examined the late-flowering behavior of two ecotypes of Arabidopsis thaliana, Sf-2 and Le-0. The late-flowering trait segregates as a single dominant gene in crosses with the early-flowering Columbia ecotype. This gene, which we refer to as FLA, is located at one end of chromosome 4 between RFLP markers 506 and 3843 and is thus distinct from previously mapped genes that affect flowering time. The extreme delay in flowering time caused by the FLA gene can be overcome by vernalization in both the ecotypes in which it occurs naturally and in the Columbia ecotype into which this gene has been introgressed.  相似文献   

9.

Background  

The interaction of Arabidopsis with Alternaria brassicicola provides a model for disease caused by necrotrophs, but a drawback has been the lack of a compatible pathosystem. Infection of most ecotypes, including the widely-studied line Col-0, with this pathogen generally leads to a lesion that does not expand beyond the inoculated area. This study examines an ecotype, Dijon G (DiG), which is considered sensitive to A. brassicicola.  相似文献   

10.
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat‐specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments.  相似文献   

11.
Coregonine fish represent the most successful evolutionary lineage of salmonids with Coregonus as the most speciose salmonid genus inhabiting numerous postglacial lakes across the northern hemisphere. We isolated and characterized 31 polymorphic microsatellite loci in Coregonus clupeaformis with an average number of 5.3 alleles per locus (range three to eight) and an overall expected heterozygosity of 0.74 ± 0.11. Two loci revealed significant linkage associations through analyses of mapping families. Six additional salmonid taxa assessed for cross‐species amplification revealed between 18 and 26 positive amplifications and between two and 12 polymorphic loci per species.  相似文献   

12.
A pot culture experiment was used to determine the differences in uptake characteristics of a cadmium hyperaccumulator Solanum nigrum L. discovered in China, an ecotype from Melbourne, Australia and a non-hyperaccumulator Solanum melogena. Australian ecotype was not significantly different to the China ecotype. In particular, Cd concentration in leaves and shoots of S. nigrum collected from Australia were 166.0 and 146.3 mg kg?1 respectively when 20 mg kg?1 Cd spiked, and were not significantly different to the ecotype imported from China which had 109.8 and 85.3 mg kg?1 respectively, in the stems and leaves. In contrast, the tolerance of the eggplant to Cd was significantly less than the two S. nigrum ecotypes. Although some morphological properties of S. nigrum collected from Australia were different from that of the plants collected from China, Cd hyperaccumulator characteristics of two ecotypes were similar. The results suggested that the tolerance and uptake of Cd may be a constitutive trait of this species.  相似文献   

13.

Background  

Teleost fishes of the Coregonidae are good model systems for studying postglacial evolution, adaptive radiation and ecological speciation. Of particular interest is whether the repeated occurrence of sympatric species pairs results from in-situ divergence from a single lineage or from multiple invasions of one or more different lineages. Here, we analysed the genetic structure of Baltic ciscoes (Coregonus albula complex), examining 271 individuals from 8 lakes in northern Germany using 1244 polymorphic AFLP loci. Six lakes had only one population of C. albula while the remaining two lakes had C. albula as well as a sympatric species (C. lucinensis or C. fontanae).  相似文献   

14.
Littorina saxatilis is becoming a model system for understanding the genomic basis of ecological speciation. The parallel formation of crab‐adapted ecotypes that exhibit partial reproductive isolation from wave‐adapted ecotypes has enabled genomic investigation of conspicuous shell traits. Recent genomic studies suggest that chromosomal rearrangements may enable ecotype divergence by reducing gene flow. However, the genomic architecture of traits that are divergent between ecotypes remains poorly understood. Here, we use 11,504 single nucleotide polymorphism (SNP) markers called using the recently released L. saxatilis genome to genotype 462 crab ecotype, wave ecotype and phenotypically intermediate Spanish L. saxatilis individuals with scored phenotypes. We used redundancy analysis to study the genetic architecture of loci associated with shell shape, shape corrected for size, shell size and shell ornamentation, and to compare levels of co‐association among different traits. We discovered 341 SNPs associated with shell traits. Loci associated with trait divergence between ecotypes were often located inside putative chromosomal rearrangements recently characterized in Swedish L. saxatilis. In contrast, we found that shell shape corrected for size varied primarily by geographic site rather than by ecotype and showed little association with these putative rearrangements. We conclude that genomic regions of elevated divergence inside putative rearrangements were associated with divergence of L. saxatilis ecotypes along steep environmental axes—consistent with models of adaptation with gene flow—but were not associated with divergence among the three geographical sites. Our findings support predictions from models indicating the importance of genomic regions of reduced recombination allowing co‐association of loci during ecological speciation with ongoing gene flow.  相似文献   

15.

Background and Aims

Summer dormancy is an adaptive trait in geophytes inhabiting regions with a Mediterranean climate, allowing their survival through the hot and dry summers. Summer dormancy in Poa bulbosa is induced by increasing day-length and temperature and decreasing water availability during spring. Populations from arid habitats became dormant earlier than those from mesic habitats. Relaxation of dormancy was promoted by the hot, dry summer conditions. Here we test the hypothesis that dormancy relaxation is also delayed in ecotypes of P. bulbosa inhabiting arid regions, as a cautious strategy related to the greater unpredictability of autumn rains associated with decreasing precipitation.

Methods

Ecotypes collected across a precipitation gradient (100–1200 mm year−1) in the Mediterranean climate region were grown under similar conditions in a net-house in Israel. Differences among ecotypes in dormancy induction and dormancy relaxation were determined by measuring time to dormancy onset in spring, and time to sprouting after the first effective rain in autumn. Seasonal and ecotype variation in dormancy relaxation were assessed by measuring time to sprouting initiation, rate of sprouting and maximal sprouting of resting dry bulbs sampled in the net-house during late spring, and mid- and late summer, and planted in a wet substrate at temperatures promoting (10 °C) or limiting (20 °C) sprouting.

Key Results

Earlier dormancy in the spring and delayed sprouting in autumn were correlated with decreasing mean annual rainfall at the site of ecotype origin. Seasonal and ecotype differences in dormancy relaxation were expressed in bulbs planted at 20 °C. During the summer, time to sprouting decreased while rate of sprouting and maximal sprouting increased, indicating dormancy relaxation. Ecotypes from more arid sites across the rainfall gradient showed delayed onset of sprouting and lower maximal sprouting, but did not differ in rate of sprouting. Planting at 10 °C promoted sprouting and cancelled differences among ecotypes in dormancy relaxation.

Conclusions

Both the induction and the relaxation of summer dormancy in P. bulbosa are correlated with mean annual precipitation at the site of population origin. Ecotypes from arid habitats have earlier dormancy induction and delayed dormancy relaxation, compared with those from mesic habitats.  相似文献   

16.
World populations or stock distinction of Tursiops truncatus has been difficult to assess, because of large variations in morphology, habitat, feeding habits, and social structure among areas, which may reflect phylogenetic segregation or ecological plasticity. In the Gulf of California, Mexico, two common bottlenose dolphin ecotypes (inshore and offshore) have been reported. The offshore ecotype is frequently observed in association with sperm whales (Physeter macrocephalus) but the reason for this is still unknown. To explore the degree of resource partitioning/overlap between these species and stocks, we used skin stable isotope values (δ13C, δ15N) to estimate quantitative metrics of isotopic niche width (Bayesian standard ellipse areas, SEAB) and estimated their diet composition using Bayesian isotopic mixing models. The inshore ecotype in different regions (north, central, and south) of the Gulf of California exhibited distinct δ15N values and SEAB, suggesting a latitudinal gradient in nitrogen sources of coastal localities. The SEAB of inshore and offshore bottlenose dolphin ecotypes was completely distinct, indicating resource partitioning. Associated offshore ecotype and sperm whales had overlapping SEAB. The isotopic mixing model indicates that a considerable proportion of both species’ diet is large Humbolt squid. Our results suggest that resource partitioning and species association are two strategies that bottlenose dolphin ecotypes use in this zone.  相似文献   

17.
Abiotic factors can act as barriers to colonization and drive local adaptation. During colonization, organisms may cope with changes in abiotic factors using existing phenotypic plasticity, but the role of phenotypic plasticity in assisting or hindering the process of local adaptation remains unclear. To address these questions, we explore the role of winter conditions in driving divergence during freshwater colonization and the effects of plasticity on local adaptation in ancestral marine and derived freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We found that freshwater‐resident stickleback had greater tolerance of acute exposure to low temperatures than marine stickleback, but these differences were abolished after acclimation to simulated winter conditions (9L:15D photoperiod at 4 °C). Plasma chloride levels differed between the ecotypes, but showed a similar degree of plasticity between ecotypes. Gene expression of the epithelial calcium channel (ECaC) differed between ecotypes, with the freshwater ecotype demonstrating substantially greater expression than the marine ecotype, but there was no plasticity in this trait under these conditions in either ecotype. In contrast, growth (assessed as final mass) and the expression of an isoform of the electroneutral Na+/H+ exchanger (NHE3) exhibited substantial change with temperature in the marine ecotype that was not observed in the freshwater ecotype under the conditions tested here, which is consistent with evolution of these traits by a process such as genetic assimilation. These data demonstrate substantial divergence in many of these traits between freshwater and marine stickleback, but also illustrate the complexity of possible relationships between plasticity and local adaptation.  相似文献   

18.

Questions

A robust ecosystem requires a functionally heterogeneous community of organisms with ecological traits that permit broad resource partitioning. Understanding community diversity patterns can help investigate drivers of community assembly and assess restoration success. Do biodiversity patterns differ among grassland communities sown with different ecotypes of dominant species during restoration along a rainfall gradient in the tallgrass prairie of the central US Great Plains?

Location

Four field sites across a rainfall gradient within the North American Great Plains: Colby, Kansas (39°23′17.8″N, 101°04′57.4″W), Hays, Kansas (38°51′13.2″N, 99°19′08.6″W), Manhattan, Kansas (39°08′22.3″N, 96°38′23.3″W), and Carbondale, Illinois (IL, 37°41′47.0″N, 89°14′19.2″W).

Methods

We applied linear mixed models to assess the effect of dominant species ecotype, year, and location on grassland taxonomic, phylogenetic, and functional diversity.

Results

The non-local grass ecotype (compared to the local ecotype) promoted species richness. In contrast, the effect of the dominant species ecotype on phylogenetic or functional diversity was site-specific over the 10-year restoration. Richness decreased across the rainfall gradient from dry to moist sites, and the wettest site had the highest phylogenetic and functional diversity.

Conclusions

Our results suggest that abiotic filtering by rainfall is a key assembly mechanism that could predict grassland changes in biodiversity in the early restoration phases. Given the community response across the tallgrass prairie, restoration practitioners should consider the impact of regional sources of dominant species used in restoration when biodiversity is a restoration goal. It is recommended for future grassland restoration to detect gaps and limitations in evolutionary and trait structure that will reveal which diversity components to evaluate.  相似文献   

19.
Currently defined ecotypes in marine cyanobacteria Prochlorococcus and Synechococcus likely contain subpopulations that themselves are ecologically distinct. We developed and applied high-throughput sequencing for the 16S-23S rRNA internally transcribed spacer (ITS) to examine ecotype and fine-scale genotypic community dynamics for monthly surface water samples spanning 5 years at the San Pedro Ocean Time-series site. Ecotype-level structure displayed regular seasonal patterns including succession, consistent with strong forcing by seasonally varying abiotic parameters (e.g. temperature, nutrients, light). We identified tens to thousands of amplicon sequence variants (ASVs) within ecotypes, many of which exhibited distinct patterns over time, suggesting ecologically distinct populations within ecotypes. Community structure within some ecotypes exhibited regular, seasonal patterns, but not for others, indicating other more irregular processes such as phage interactions are important. Network analysis including T4-like phage genotypic data revealed distinct viral variants correlated with different groups of cyanobacterial ASVs including time-lagged predator–prey relationships. Variation partitioning analysis indicated that phage community structure more strongly explains cyanobacterial community structure at the ASV level than the abiotic environmental factors. These results support a hierarchical model whereby abiotic environmental factors more strongly shape niche partitioning at the broader ecotype level while phage interactions are more important in shaping community structure of fine-scale variants within ecotypes.  相似文献   

20.
Two ecotypes of the common bottlenose dolphin (Tursiops truncatus) occur in New Zealand waters: a widely studied Nationally Endangered coastal ecotype and a little-known oceanic ecotype. Site fidelity and association patterns of the oceanic ecotype, and home range overlap with the coastal ecotype, are examined from photo-identification records collected off northeastern New Zealand between 2005 and 2016. The oceanic ecotype occurs widely in the study area: distance from shore ranged from <1 to ~150 km and home ranges of the two ecotypes overlap in some areas. Forty-nine percent of the 478 identified distinctive or very distinctive individuals were sighted during more than 1 year and resightings spanned over 10 years and 650 km. All individuals were linked by association in a single, albeit clustered, social network. Unlike the coastal ecotype, interspecific associations with false killer (Pseudorca crassidens) and southern long-finned pilot whales (Globicephala melas edwardii) were frequent, occurring during 84% of encounters. Only one oceanic individual matched any of the individuals from the coastal ecotype photo-identification catalogues throughout the study area, suggesting that the two ecotypes co-occur parapatrically. We recommend that the two ecotypes be considered independent management units for conservation purposes due to their divergent ecologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号