首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The application of a carbon-silicon bioisosteric replacement strategy to find new acaricides with improved properties led to the discovery of Sila-Cyflumetofen 6B, a novel and highly potent acaricide. The essential t-butyl group in the beta-ketonitrile acaricide Cyflumetofen 6A could be swapped with the bioisosteric trimethyl-silyl group with retention of high level acaricidal activity and favourable pharmacological properties. Sila-Cyflumetofen 6B was found to possess similar preferred energy-minimized conformation and electrostatic potential surface compare to Cyflumetofen 6A. Herein we also report the development and application of the first homology model of the spider mite mitochondrial electron transport complex II (succinate ubiquinone oxidoreductase; SQR) and demonstrated that the active metabolite AB-1 of Cyflumetofen 6A and its sila-analogue Sila-AB-1 bind to the Qp site in same binding pose and that both compounds form two H-bonds and a cation-π interaction with Trp 165, Tyr 433 and Arg 279, respectively. Furthermore, we also developed a new mode of action test for spider mite Complex II using cytochrome c as electron acceptor and blocking its re-oxidation by addition of KCN resulting in a sensitive and convenient colorimetric assay. This new method avoids the use of non-specific artificial electron acceptors and allows to measure SQR inhibition in crude extracts of Tetranychus urtice. In this assay Sila-AB-1, the intrinsically active metabolite of Sila-Cyflumetofen, 6A exhibited even a somewhat lower IC50 value than the metabolite of Cyflumetofen AB-1. Synthetic methodologies are described for the preparation of Sila-Cyflumetofen 6B and its active metabolite Sila-AB-1 which enable an efficient synthesis of these compounds in only 5 and 4 steps, respectively, from cheap commercial starting materials. Although the value of carbon-silicon bioisosteric replacements has already be demonstrated in the past it is to the best of our knowledge the first report of a successful application in crop protection research in the last two decades.  相似文献   

2.
Residues Tyr59, Gly78, Ser79, Met103, Gln107, Ile136 and Glu137 in human arsenic (+3 oxidation state) methyltransferase (hAS3MT) were deduced to form a potential hydrogen bond network around S-adenosylmethionine (SAM) from the sequence alignment between Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM) and hAS3MT. Herein, seven mutants Y59A, G78A, S79A, M103A, Q107A, I136A and E137A were obtained. Their catalytic activities and conformations were characterized and models were built. Y59A and G78A were completely inactive. Only 7.0%, 10.6% and 13.8% inorganic arsenic (iAs) was transformed to monomethylated arsenicals (MMA) when M103A, Q107A and I136A were used as the enzyme. The Vmax (the maximal velocity of the reaction) values of M103A, Q107A, I136A and E137A were decreased to 8%, 22%, 15% and 50% of that of WT-hAS3MT, respectively. The KM(SAM) (the Michaelis constant for SAM) values of mutants M103A, I136A and E137A were 15.7, 8.9 and 5.1 fold higher than that of WT-hAS3MT, respectively, indicating that their affinities for SAM were weakened. The altered microenvironment of SAM and the reduced capacity of binding arsenic deduced from KM(As) (the Michaelis constant for iAs) value probably synergetically reduced the catalytic activity of Q107A. The catalytic activity of S79A was higher than that of WT despite of the higher KM(SAM), suggesting that Ser79 did not impact the catalytic activity of hAS3MT. In short, residues Tyr59 and Gly78 significantly influenced the catalytic activity of hAS3MT as well as Met103, Ile136 and Glu137 because they were closely associated with SAM-binding, while residue Gln107 did not affect SAM-binding regardless of affecting the catalytic activity of hAS3MT. Modeling and our experimental results suggest that the adenine ring of SAM is sandwiched between Ile136 and Met103, the amide group of SAM is hydrogen bonded to Gly78 in hAS3MT and SAM is bonded to Tyr59 with van der Waals, cation-π and hydrogen bonding contacts.  相似文献   

3.
4.
5.
PI-103 (7) is a potent dual phosphatidylinositol 3-kinase (PI3K)/mTOR inhibitor, but its rapid in vivo metabolism hinders its further clinical development. To improve the bioavailability of PI-103, we designed and synthesized a PI-103 bioisostere, PI-103BE (9) in which the phenolic hydroxyl group of PI-103 was replaced by a boronate, a structural modification known to enhance bioavailability of molecules containing phenolic hydroxyl moieties. In cell culture, PI-103BE is partially converted to its corresponding boronic acid (10) and to a lesser extent the active ingredient, PI-103. This mixture contributes to the in vitro activity of 9 that shows reduced potency compared to the parent compound. When administered to mice by oral gavage, 9 displays a significantly improved pharmacokinetic profile compared to PI-103, which shows no oral bioavailability at the same dose. Drug exposure of 9 as measured by the area under curve (AUC) value is 88.2 ng/mL*h for 7 and 8879.9 ng/mL*h for 10. When given by intraperitoneal injection (IP), the prodrug afforded an AUC of 32.3 ng/mL*h for 7 and 400.9 ng/mL*h for 10, compared to 9.7 ng/mL*h from PI-103 injection. In plasma from both pharmacokinetic studies, 9 is fully converted to 10 and 7, with the boronic acid metabolite (10) displaying antiproliferative activities comparable to 9, but weaker than 7. The boronic bioisostere of PI-103 thus offers an improved bioavailability that could be translated to in vivo efficacy of PI-103.  相似文献   

6.
7.
8.
[目的]丁氟螨酯是一种新型酰基乙腈类非内吸性杀螨剂,对害螨的各个螨态都有很高活性,具有较高的应用价值.本文评价了丁氟螨酯对二斑叶螨生长发育的影响,以期为合理用药和二斑叶螨的综合防治提供理论依据.[方法]采用浸叶法测定丁氟螨酯对二斑叶螨成螨与卵的致死中浓度、雌成螨产卵量、各螨态存活率以及各发育历期的影响.[结果]经丁氟螨...  相似文献   

9.
10.
Recombinant gut hormone oxyntomodulin (OXM) is known to act as a satiety signal in human subjects and has therapeutic potential as an appetite controlling agent. The only form of this hormone that has a prospective use is a modified one, because native OXM has a very short half-life in vivo. Conjugation of OXM and the natural hydrophilic polymer polysialic acid (PSA) may significantly improve its half-life. Chemical polysialylation in vitro was used to create a long-acting form of OXM, the polysialic acid–oxyntomodulin (PSA–OXM) conjugate. The conjugation site was identified using mass shift comparative analysis of Asp-N proteolytic digests. The anorexic effect of the conjugate was tested on the lean, fasted mouse model. A two-stage purification technique was developed to obtain a homogeneous PSA–OXM conjugate, suitable for in vivo testing. The N-terminal backbone primary amino group was found to be the only point of conjugation. The conjugate obtained was resistant to the DPP-IV protease. A single injection of PSA–OXM at 15 μmol/kg dose was sufficient to maintain a steady decrease in food consumption for 8 h (P < 0.05). The length of the anorexic effect achieved is comparable to other long-acting derivatives of OXM but it requires a much higher dose for administration. It is expected that site-directed attachment of the PSA chain to the inner residues of OXM, away from the site of interaction with receptors, would produce a compound with a higher specific activity but comparable stability in the bloodstream. The conjugation technique used may be used to create OXM derivatives and other related hormones to obtain long-lasting variants, with improved suitability for clinical use.  相似文献   

11.
12.
13.
14.
Nitration in proteins is a physiologically relevant process and the formation of 3-nitrotyrosine was first proposed as an in vivo marker of the production of reactive nitrogen species in oxidative stress. No studies have been published on structural changes associated with nitration of myoglobin. To address this deficiency the electrochemical nitration of equine skeletal muscle (Mb) at amino acid tyrosine 103 has been investigated for the evaluation and characterization of structural and thermal stability changes. Y103 in Mb is one of the most exposed tyrosine residues and it is also close to the heme group. Effects of Y103 nitration on the secondary and tertiary structure of Y103 have been studied by UV–Vis, circular dichroism, fluorescence and NMR spectroscopy and by electrochemical studies. At physiological pH, subtle changes were observed involving slight loosening of the tertiary structure and conformational exchange processes. Thermal stability of the nitrated protein was found to be reduced by 5 °C for the nitrated Mb compared with the native Mb at physiological pH. Altogether, NMR data indicates that nitrated Mb has a very similar tertiary structure to that of native Mb, although with a slightly open conformation.  相似文献   

15.
Polysaccharides produced by Neisseria meningitidis are pharmaceutically important molecules, and are the active components of vaccines against N. meningitidis serogroups A, C, W135 and Y. Effective vaccines based on capsular polysaccharide, polysaccharide conjugates and outer membrane vesicles have been developed for strains expressing capsular polysaccharides that define the sero groups A, C, Y and W135. However, conventional approaches to develop a vaccine for group B strains have been largely unsuccessful. This review focuses on the various aspects of fermentative production of meningococcal polysaccharide from N. meningitidis, methods of conjugation for improving the immunogenicity of polysaccharide vaccine, and efficient and cost effective methods for the purification of N. meningitidis capsular polysaccharide and outer membrane vesicles. In addition, different analytical techniques for the quantitative determination of polysaccharide vaccine and evaluation of structural integrity of conjugate vaccine have been described.  相似文献   

16.
The mycotoxin deoxynivalenol (DON) causes serious problems worldwide in the production of crops such as wheat and barley because of its toxicity toward humans and livestock. A bacterial culture capable of degrading DON was obtained from soil samples collected in wheat fields using an enrichment culture procedure. The isolated bacterium, designated strain WSN05-2, completely removed 1,000???g/mL of DON from the culture medium after incubation for 10?days. On the basis of phylogenetic studies, WSN05-2 was classified as a bacterium belonging to the genus Nocardioides. WSN05-2 showed significant growth in culture medium with DON as the sole carbon source. High-performance liquid chromatography analysis indicated the presence of a major initial metabolite of DON in the culture supernatant. The metabolite was identified as 3-epi-deoxynivalenol (3-epi-DON) by mass spectrometry and 1H and 13C nuclear magnetic resonance analysis. The amount of DON on wheat grain was reduced by about 90% at 7?days after inoculation with WSN05-2. This is the first report of a Nocardioides sp. strain able to degrade DON and of the yet unknown 3-epi-DON as an intermediate in the degradation of DON by a microorganism.  相似文献   

17.
Sir2 is a central regulator of yeast aging and its deficiency increases daughter cell inheritance of stress- and aging-induced misfolded proteins deposited in aggregates and inclusion bodies. Here, by quantifying traits predicted to affect aggregate inheritance in a passive manner, we found that a passive diffusion model cannot explain Sir2-dependent failures in mother-biased segregation of either the small aggregates formed by the misfolded Huntingtin, Htt103Q, disease protein or heat-induced Hsp104-associated aggregates. Instead, we found that the genetic interaction network of SIR2 comprises specific essential genes required for mother-biased segregation including those encoding components of the actin cytoskeleton, the actin-associated myosin V motor protein Myo2, and the actin organization protein calmodulin, Cmd1. Co-staining with Hsp104-GFP demonstrated that misfolded Htt103Q is sequestered into small aggregates, akin to stress foci formed upon heat stress, that fail to coalesce into inclusion bodies. Importantly, these Htt103Q foci, as well as the ATPase-defective Hsp104Y662A-associated structures previously shown to be stable stress foci, co-localized with Cmd1 and Myo2-enriched structures and super-resolution 3-D microscopy demonstrated that they are associated with actin cables. Moreover, we found that Hsp42 is required for formation of heat-induced Hsp104Y662A foci but not Htt103Q foci suggesting that the routes employed for foci formation are not identical. In addition to genes involved in actin-dependent processes, SIR2-interactors required for asymmetrical inheritance of Htt103Q and heat-induced aggregates encode essential sec genes involved in ER-to-Golgi trafficking/ER homeostasis.  相似文献   

18.
19.
Molecular hybridization of the known anti-HIV-1 template DPC083 and etravirine based on docking model overlay has been generated a novel series of diarylbenzopyrimidine analogues (DABPs) (5az). These new hybrids were assessed for their activity against HIV in MT-4 cell cultures. Most of these compounds showed good activity against wild-type HIV-1 and mutant viruses. In particular, compound 5r showed the most potent activity against wild-type HIV-1 with an EC50 value of 1.8 nM, and with a selectivity index up to 111,954. It also proved more active against mutant L100I, K103N, Y188L, and K103N + Y181C RT HIV-1 strains than efavirenz.  相似文献   

20.
Marble brain disease (MBD) also known as Guibaud-Vainsel syndrome is caused by autosomal recessive mutations in the human carbonic anhydrase II (HCA II) gene. HCA II is a 259 amino acid single domain enzyme and is dominated by a 10-stranded beta-sheet. One mutation associated with MBD entails the H107Y substitution where H107 is a highly conserved residue in the carbonic anhydrase protein family. We have previously demonstrated that the H107Y mutation is a remarkably destabilizing folding mutation [Almstedt et al. (2004) J. Mol. Biol. 342, 619-633]. Here, the exceptional destabilization by the H107Y mutation has been further investigated. A mutational survey of position H107 and a neighboring conserved position E117 has been performed entailing the mutants H107A, H107F, H107N, E117A and the double mutants H107A/E117A and H107N/E117A. All mutants were severely destabilized versus GuHCl and heat denaturation. Thermal denaturation and GuHCl phase diagram and ANS analyses showed that the mutants shifted HCA II toward populating ensembles of intermediates of molten globule type under physiological conditions. The native state stability of the mutants was in the following order: wt > H107N > E117A > H107A > H107F > H107Y > H107N/E117A > H107A/E117A. In conclusion: (i) H107N is least destabilizing likely due to compensatory H-bonding ability of the introduced Asn residue. (ii) Double mutant cycles surprisingly reveal additive destabilization of H107N and E117A showing that H107 and E117 are independently stabilizing the folded protein. (iii) H107Y and H107F are exceptionally destabilizing due to bulkiness of the side chains whereas H107A is more accommodating, indicating long-range destabilizing effects of the natural pathogenic H107Y mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号