首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lagerstätten, places where soft‐bodied organisms became mineralized, provide a substantial bulk of palaeobiological information, but the detailed mechanisms of how soft‐tissue preservation takes place remain debatable. An experimental taphonomy approach, which allows for direct study of decay and mineralization, offers a means to study the preservational potential of different soft‐bodied organisms under controlled conditions. Here we compare the preservational capacity of two types of clay (kaolinite and montmorillonite) through a long‐term (24 month) experiment involving the burial and decay of small crustaceans. Our experimental design is innovative in that it models catastrophic sedimentation in fine‐grained colloidal suspension, which is believed to form Lagerstätten deposits. We demonstrated better preservation of buried organisms in clays compared to water, and in kaolinite compared to montmorillonite. As aluminium cations were present in high concentrations in kaolinite sediment but not in montmorillonite, the better preservation in kaolinite is attributed to the tanning properties of aluminium, which catalyses cross‐linking in proteins, protecting them from bacterial degradation. Anaerobic environments and acidification also slow down decay, but they are less effective than tanning. Kaolinite and montmorillonite replaced the crustacean integuments differently: in the remains buried in kaolinite, Al and Si were detected in equal proportions, while in those buried in montmorillonite, the Si content appeared to be much higher even in comparison with the initial sample of the clay. These variations probably arose from the different dynamics of acidic hydrolysis in the two clays associated with anaerobic decomposition of organic matter. Our results show that the preservation mechanism includes multi‐component interactions between the solution, mineral, sediment and organic remains; taken separately, any single component explains little. The specific conditions that occur within the colloidal clay sediments can facilitate conservation and start fast mineralization according to chemical properties and elemental content.  相似文献   

2.
S. J. Loyd 《Geobiology》2017,15(1):146-157
Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13C‐depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate‐free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ13Ccarb) range from ?22.5 to ?3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ13Corg) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings indicate that concretions can promote delayed oxidative weathering of organic carbon in outcrop and therefore impact local chemical cycling.  相似文献   

3.
Monovalent ([Na+] > 10 mM) and divalent ([Ca2+], [Mg2+] > 1.0 mM) cations induced the precipitationof nucleic acid molecules. In the presence of clay minerals (montmorillonite and kaolinite), there was adsorption instead of precipitation. The cation concentration needed for adsorption depended on both the valence of the cations and the chemical nature of the nucleic acid molecules. Double-stranded nucleic acids needed higher cation concentrations than single-stranded ones to be adsorbed to the same extent on clay. Divalent cations were more efficient than monovalent ones in mediating adsorption. Adsorption to the clay occurred only when both nucleic acids and cations were present. However, once the complexes were formed, the cations could not be removed from the system by washing, indicating that they are directly involved in the association between nucleic acids and mineral surfaces.These observations indicate that cations take part directly in the formation of nucleic acid-clay complexes, acting as a `bridge' between the negative charges on the mineral surface and those of the phosphate groups of the genetic polymer. The relatively low cation concentrations needed for adsorption and the ubiquitous presence of clay minerals in the environment suggest that the adsorption of nucleic acids on mineral surfaces could have taken place in prebiotic habitats. This may have played an important role in the formation and preservation of nucleic acids and/or their precursor polymers.  相似文献   

4.
华北高于庄组硅化微体化石组合的古环境   总被引:1,自引:1,他引:0  
华北中元古代高于庄组 ( 1 4- 1 5亿年 )的硅质叠层石中保存了完好的多种微生物化石。从这些叠层石的微细构造分析 ,成岩早期硅质矿物的交代作用为微体化石的原位保存起了很重要的作用。除部分居住者和浮游的分子外 ,两种丝状蓝藻 ( Siphonophycus inornatum和Eoschizothric composita)和两种球状蓝藻 ( Coccostratusdispergens和 Eoentophysalisbelcherensis)是这些藻席的主要建造者。以球状蓝藻 Eoentophysalis为主的藻席可能发育于潮下高能环境中 ;而以多种丝状蓝藻为主的藻席可能反映了当时的沉积环境为中—高潮间带的局部静止小水体  相似文献   

5.
The Naajaat lake in the Nuussuaq Basin on Disko and Nuussuaq formed in a geological setting between cratonic crystalline Precambrian rocks overlain by Cretaceous sediments and an actively forming Paleocene volcanic province. The lacustrine deposits, shales as well as hyaloclastite breccias, accumulated in low-lying areas inundated by fresh water and sealed off from marine transgressions by a broad subaerial volcanic terrain. Foreset-bedded hyaloclastite breccias demonstrate water depths of up to 450 m, and the area of the lake was 2500 km2 at its maximum extent. The lake probably existed for less than 0.5 million years. The lake received clay and silt from two provenance areas. Quartz contents of more than 25% in the majority of the sediment samples indicate that large amounts of material were continuously supplied to the lake from the crystalline terrain, whereas the volcanic terrain supplied smectite and mixed-layer minerals to the lake. High kaolinite contents stem from the crystalline or both provenance areas. The shales are characterized by high TOC (up to 11%), lack of pyrite, presence of terrestrial spores and pollen and lack of marine dinoflagellates. The lacustrine sediments rest on an erosional unconformity and its correlative conformity. The unconformity developed during the latest Cretaceous and Early Paleocene. Five stages are recognized in the geological development of the lake. Stages 1–4 are characterized by accumulation of hyaloclastite breccias, rise in lake level, and eventual transgression of subaerial terrains. The rises in lake level were caused by stemming of fluvial run-off behind the aggrading volcanic pile. Stage 5 corresponds to cessation of volcanic activity, a stable lake level, and progradation of clastic sediments, resulting in infilling of the lake. During the lacustrine transgression only sediment in suspension was transported into the central parts of the lake.  相似文献   

6.
In the Ems estuary the gradients in dissolved phosphorus and iron are non-conservative and opposite. The relations between different mineral compounds, environmental conditions and phosphate concentrations were studied, in an attempt to explain this. Laboratory experiments on water samples from the reaches with high concentrations of phosphate and of suspended matter revealed a low concentration of calcite-bound phosphorus in the middle reaches of the estuary (only 0.07%). Therefore, it is concluded that calcite possibly plays only a modest role in phosphate distribution in the Ems estuary. Further experiments revealed that nearly 70% of the particulate inorganic phosphorus is iron-bound. It is demonstrated that organic coatings on minerals inhibit phosphate release at a low redox potential. Moreover, the organic matter itself contained c. 20% of particulate phosphorus. Approximately 10% of the particulate phosphorus may be associated with clay minerals. It is concluded that in addition to biological processes, the phosphorus associated with ironoxyhydroxides may be crucial for the seasonal variation of the phosphate concentrations in the water.  相似文献   

7.
We present new data on the ingestion of minerals from termite mound soil by East African chimpanzees (Pan troglodytes schweinfurthii) living in the Budongo Forest Reserve, Uganda, the Gombe National Park and the Mahale Mountains National Park, Tanzania. Termite mound soil is here shown to be a rich source of minerals, containing high concentrations of iron and aluminum. Termite mound soil is not, however, a source of sodium. The concentrations of iron and aluminum are the highest yet found in any of the mineral sources consumed. Levels of manganese and copper, though not so high as for iron and aluminum, are also higher than in other dietary sources. We focus on the contribution of termite mound soil to other known sources of mineral elements consumed by these apes, and compare the mineral content of termite soil with that of control forest soil, decaying wood, clay, and the normal plant‐based chimpanzee diet at Budongo. Samples obtained from Mahale Mountains National Park and Gombe National Park, both in Tanzania, show similar mineral distribution across sources. We suggest three distinct but related mechanisms by which minerals may come to be concentrated in the above‐mentioned sources, serving as potentially important sources of essential minerals in the chimpanzee diet.  相似文献   

8.
The clay mineralogy and heavy metal/metalloid (As, Pb and Cu) contents of soils developed on the various rock units in a central highlands environment in Victoria (Creswick, Australia) have been investigated. The clay minerals identified showed an order of abundance as: kaolinite ? illite > smectite > mixed-layer (ML) ≈ vermiculite. The soil clay mineralogy did not change systematically with depth (0~ 10, 10~ 20 and 20~ 30 cm) and showed large variations spatially. The high proportion of kaolinite was probably due to the removal of 2:1 phyllosilicates by the formation of 1:1 kaolinite through weathering, which also reduced the cation exchange capacity (CEC) and electrical conductivity (EC, soil: water ratio of 1:5) of soils by aging. Soils were classified as silty loam to loam with a low clay size (≤ 2μ m) fraction. The soils were acidic to moderately acidic with pH ranging from 4.5 to 7.1, averaging 5.7. Concentrations of As, Pb, and Cu (average values 24.3, 16.7 and 11.0 mg/kg, respectively) did not show an association with the clay mineral contents except vermiculite. The occurrence of smectite and mixed-layer clay contents, although far lower than kaolinite and illite, contributed significantly to CEC of soils. The study area was affected by mining, high natural background As values dominate the area and the role of clay minerals in fixation of metalloid/metals was found to be less significant. Low organic matter content (average ~ 6.5%), low soil surface area (average ~ 1.0 m2/g) and the high proportion of kaolinite mineral content result in a limited ability to fix heavy metals. The role of Fe oxides appeared to be a key influence in the fixation of As and other potentially toxic metals, rather than the clay minerals, and therefore requires further research. This work highlighted the importance of the determination of types and amounts of clay minerals of natural soils in environmental management.  相似文献   

9.
The physical and chemical characteristics of the oxidized surface sediment in an estuary fluctuate temporally in response to physical forces and apparently-fluctuating inputs. These characteristics, which include grain size and concentrations of organic materials and iron, will influence both trace-metal geochemistry and bioavailability. Temporal trends in the abundance of fine particles, total organic carbon content (TOC), absorbance of extractable organic material (EOM), and concentration of extractable iron in the sediment of San Francisco Bay were assessed using data sets containing approximately monthly samples for periods of two to seven years. Changes in wind velocity and runoff result in monthly changes in the abundance of fine particles in the intertidal zone. Fine-grained particles are most abundant in the late fall/early winter when runoff is elevated and wind velocities are low; particles are coarser in the summer when runoff is low and wind velocities are consistently high. Throughout the bay, TOC is linearly related to fine particle abundance (r = 0.61). Temporal variability occurs in this relationship, as particles are poor in TOC relative to percent of fine particles in the early rainy season. Iron-poor particles also appear to enter the estuary during high runoff periods; while iron is enriched on particle surfaces in the summer. Concentrations of extractable iron and absorbance of EOM vary strongly from year to year. Highest absorbances of EOM occurred in the first year following the drought in 1976–77, and in 1982 and 1983 when river discharge was unusually high. Extractable-iron concentrations were also highest in 1976–77, but were very low in 1982 and 1983.  相似文献   

10.
Potassium (K) is a major element for plant growth. The K+ ions fixed in soil 2:1 clay mineral interlayers contribute to plant K nutrition. Such clay minerals are most often the majority in temperate soils. Field and laboratory observations based on X-ray diffraction techniques suggest that 2:1 clay minerals behave as a K reservoir. The present work investigated this idea through data from a replicated long term fertilization experiment which allowed one to address the following questions: (1) Do fertilization treatments induce some modifications (as seen from X-ray diffraction measurements) on soil 2:1 clay mineralogy? (2) Are soil 2:1 clay mineral modifications related to soil K budget in the different plots? (3) Do fertilizer treatments modify clay Al, Si, Mg, Fe or K elemental content? (4) Are clay mineral modifications related to clay K content modifications? (5) Are clay mineral changes related to clay Al, Si, Mg or Fe content as well as those of K content? Our results showed that K fertilization treatments considered in the context of soil K budget are very significantly related to 2:1 soil clay mineralogy and clay K content. The 2:1 clay mineral modifications observed through X-ray measurements were quantitatively correlated with chemically analyzed clay K content. Clay K content modifications are independent from clay Al, Si, Mg or Fe contents. These results show that the soil chemical environment can modify interlayer site occupations (illite content) which suggests that high level accumulation of potassium can occur without any modification of the clay sheet structure. This study therefore validates the view of 2:1 clay minerals as a K reservoir easily quantifiable through X-ray observations.  相似文献   

11.
  1. European rivers experience increased loading of total organic carbon (TOC) from terrestrial sources due to factors involving changes in land use, climate and soil acidity. However, little is known about how increased TOC is linked to changes in the bioreactivity of organic matter in these rivers on a continental scale.
  2. We compiled paired measurements of TOC and biological oxygen demand in 5-day 20°C dark incubations from 3,486 EU monitoring rivers. Assuming first-order decay and a fixed respiratory quotient, annual average TOC and biological oxygen demand values were used to calculate 11,060 values of the decay coefficient k.
  3. The k decreased by two orders of magnitude as a power function of increasing TOC. This relationship could partly be explained by carbon quality, as the C:N ratio of the organic matter was the lowest in high-reactivity low-TOC rivers, and vice versa. A trend analysis showed that TOC increased by 18% from 1996 to 2012, while k decreased by as much as 50%. As a consequence, the biological oxygen demand in the water decreased over time in spite of the water browning trend (increased TOC).
  4. Together, these results suggest that reactivity is low near terrestrial hot spots for TOC export, and low during years with high terrestrial TOC loading, but increases in rivers with low TOC concentrations where internal processes in the water have high relative influence on bulk TOC quality. Thus, browning of European freshwaters is linked to strong decreases in TOC reactivity on a continental scale, suggesting that the impacts of browning on microbial water deoxygenation and greenhouse gas production are less severe than previously thought.
  相似文献   

12.
Detrital clay mineralogy is controlled by weathered source rock, climate, transport and deposition that in turn influence the spectral gamma-ray (SGR) response of resultant sediments. Whilst a palaeoclimate signal in clay mineralogy has been established in some ancient successions, the SGR response remains contentious, largely because the data sets have yet to be collected at the same or appropriate vertical scales to allow comparison. In addition, the influence of organic matter on SGR is not always considered. Here, we present clay mineralogical, total organic carbon (TOC) and SGR analyses from the late Jurassic and early Cretaceous of the Wessex Basin, a period of previously documented palaeoclimate change. The aim of this paper is to estimate the sensitivity of SGR as palaeoclimatic tool, SGR and clay mineral data having been collected at the same sample points, making this one of the most rigorous comparison of clay mineral and SGR to date. Overall, the correlation between high thorium/potassium or thorium/uranium and kaolinite associated with a well-established palaeoclimate change shows that elevated thorium may be used as a proxy for humid palaeoweathering, as suggested by few previous studies.  相似文献   

13.
The Gulf of Paria receives heavy metal input from urban runoff, industrial and agricultural activity, sewage and domestic wastes: both from the west coast and from inland areas of Trinidad. Non-residual concentrations of nine metals, as well as total mercury concentrations, were used to determine spatial distributions of heavy metals in sediments in the Gulf of Paria. Surficial sediment samples were collected at 37 stations, which included the mouths of 11 major rivers that flow into the Gulf of Paria. Stations were sampled twice during the wet season (July 1998 and November/ December 1998) and twice during the dry season (March 1999 and April 1999). Sediments were analyzed for aluminium (Al), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), lead (Pb), manganese (Mn), nickel (Ni), zinc (Zn) and mercury (Hg). Total Organic Carbon (TOC) and grain size analyses were also performed on the sediments. Principal component analysis showed that sediments from river mouths subject to greatest land use and anthropogenic input, were distinct from other sediments in the Gulf of Paria. This was due to higher Pb, Zn, Cu and Hg concentrations (3.53-73.30 microg g(-1), 45.8-313.9 microg g(-1), 8.43-39.71 microg g(-1) and 0.03-0.10 microg g(-1), respectively). Sediments further from the coast were also distinct due to their higher Al, Fe, Cr and Mn concentrations (1.37-3.16 mg g(-1), 9.51-18.91 mg g(-1) , 17.22-28.41 microg g(-1) and 323.6-1,564.2 microg g(-1), respectively). Cd and Pb were higher in the wet season while Ni was higher in the dry season. Pb, Zn, Cu and Hg were correlated with each other and with TOC. Correlation was also observed between Al, Fe, Cr, Mn and Ni. Al, Fe, Cr and Mn were correlated with percentage clay in sediments. The results suggest that Pb, Zn, Cu and Hg are preferentially removed by organic matter, which settles at the river-mouths, while Al, Fe, Cr, Mn, and Ni become associated with clay minerals and are transported away from the coast.  相似文献   

14.
The adsorption of nucleic acids to mineral matrixes can result in low extraction yields and negatively influences molecular microbial ecology studies, in particular for low-biomass environments on Earth and Mars. We determined the recovery of nucleic acids from a range of minerals relevant to Earth and Mars. Clay minerals, but also other silicates and nonsilicates, showed very low recovery (< 1%). Consequently, optimization of DNA extraction was directed towards clays. The high temperatures and acidic conditions used in some methods to dissolve mineral matrices proved to destruct DNA. The most efficient method comprised a high phosphate solution (P/EtOH; 1 M phosphate, 15% ethanol buffer at pH 8) introduced at the cell-lysing step in DNA extraction, to promote chemical competition with DNA for adsorption sites. This solution increased DNA yield from clay samples spiked with known quantities of cells up to nearly 100-fold. DNA recovery was also enhanced from several mineral samples retrieved from an aquifer, while maintaining reproducible DGGE profiles. DGGE profiles were obtained for a clay sample for which no profile could be generated with the standard DNA isolation protocol. Mineralogy influenced microbial community composition. The method also proved suitable for the recovery of low molecular weight DNA (< 1.5 kb).  相似文献   

15.
M. Sager  R. Pucsko 《Hydrobiologia》1991,226(1):39-49
Summary The sediments of the River Danube in the Reservoir at Altenwörth/Lower Austria, are moderately polluted with Zn, Pb, and Cd, whereas concentrations of As, Co, Cr, Cu and Ni are typical of background values. Deposit-feeding oligochaetes living in these sediments were analyzed for their trace element concentrations (As, Cd, Cu, Pb, Zn) to study pathways of recycling of sediment bound amounts to the food web. Compared with background values of benthic deposit feeders from the literature, Cu and As are low, whereas some samples were enhanced in Pb, Cd and Zn. Within the rather narrow concentration ranges, relations of tissue concentrations with chemical and mineralogical compositions of the sediment were hardly found. Increase of clay mineral contents went in parallel with increasing Cd, Zn, and Cu in the tissues, and As in the tissues with total As content. Pb in the tissues was closely related to Pb-concentrations in the pore water. By means of sequential leaching, some further relations between trace element contents in the tissues and solid phases were found. The organic detrital phase positively correlates with As-uptake, whereas hydroxylamine-reducible Mn/Fe-oxyhydroxides influence the Pb-level, and dithionite-reducible Fe/Mn influence the Cu-level. Exchangeable and weak-acid-mobile fractions of the respective metals, however, did not correlate with tissue-levels, nor did the oxalate-extractable Fe-hydroxide coatings, which carry a major part of the heavy metals at fine grain sizes in the Danube sediments investigated. Zn in the tissues was largely independent from all investigated parameters.  相似文献   

16.
Sediment profiles from four sites of the middle Ebro River (NE Spain) were examined to describe total organic carbon (TOC) and total nitrogen (TN) accretion patterns during the last century. Such patterns were related to the potential of floodplain substrates to act as C and N sinks. Two oxbow lakes with different hydroperiods and two patches of riparian forest at different successional stages were selected to represent permanently and intermittently flooded habitats, respectively. Total organic carbon (TOC) and total nitrogen (TN) stocks were estimated, whereas Cs-137 dating and aerial photographs were used to determine historical accretion rates. Our results indicate that TOC and TN accretion patterns have been modified during the last century as a result of human impact on natural river processes at both basin and site scales. Since 1963, sediment deposition at the study sites has diminished, regardless of their hydrological connectivity, indicating a reduction in the potential of the middle Ebro floodplains to act as TOC and TN sinks. Although TOC and TN concentrations are markedly higher in recent sediments, accretion rates between 1927 and 1963 still exceed those of recent years. Despite such recent human-induced changes at basin and habitat scale, the middle Ebro floodplains presented relatively high TOC and TN accretion rates, a fact that should be considered in future basin management plans. Based on those results, suggestions to maximize TOC and TN accretion through ecological restoration are provided. Specific actions include the rehabilitation of fine-grained (<2 mm) sediment delivery, land reclamation or dyke reconfiguration.  相似文献   

17.
皖南震旦系蓝田组沉积岩有机碳同位素记录   总被引:3,自引:1,他引:2  
王金权 《古生物学报》2004,43(3):424-432
皖南地区震旦系蓝田组是新元古代冰期后形成的岩石地层,它的中下段以黑色页岩沉积为主,上段为白云质灰岩。黑色页岩段的分析结果表明:底部有机碳同位素数值较低(8^13Corg平均值为-31.9‰),总有机碳(TOC)和总有机氮(TON)含量处于较低值;在底部之上,有机碳同位素数值缓慢升高(从靠近底部的-32.6‰升至顶部的-28.3‰),而TOC和TON含量分别可达17.7%和2.7‰。这一分析结果应归于冰后期在缺氧条件下大量有机质埋藏所致。可以推测,这种变化从一个侧面反映了新元古代全球性大冰期结束后气候变化和生物演化规律:冰期结束之后,海洋中的低等浮游藻类的底栖藻类在温暖气候条件下得以繁盛,伴随着这些还原性有机碳的沉积并大量进入岩石圈中,藻类光合作用产生的氧气进入大气圈,可能正是由于有机碳的沉积导致的氧气含量升高促使了真核多细胞生物在此之后得到了大发展。蓝田组上段白云质灰岩分析结果表明:有机碳同位素和无机碳同位素分别呈现出较强的负漂移(8^13Corg:-26.8‰— -35.3‰;8^13Ccarb:-8.5‰— -10.2‰),而总有机碳(TOC)含量呈现明显降低趋势。这一变化趋势可能主要归之于沉积有机质的氧化作用。可以推测,随着新元古代全球性大冰期结束后气候变暖,海洋藻类大量繁殖,藻类的光合作用产生大量的O2,海水中O2/CO2比值上升,海洋沉积环境由缺氧逐渐向富氧条件转化。  相似文献   

18.
西藏达则错盐湖沉积背景与有机沉积结构   总被引:1,自引:0,他引:1  
以西藏拟溞(Daphniopsis tibetana Sars)为优势浮游动物物种的低盐度盐湖是西藏湖泊的一个重要类型,以达则错为代表,分析了其沉积背景及沉积物组成。结果如下:(1)湖泊敞水区无机沉积以内生化学沉积为主,可代表深水盐湖无机沉积物的自然沉积过程。(2)达则错盐湖浮游植物以蓝藻、硅藻、裸藻、绿藻为主,总生物量11.35 mg/L;浮游动物生物量为4.92 mg/L,其中西藏拟溞占 82.30%;浮游植物残体受盐梯度影响在盐梯度层之上聚集,而浮游动物残体及粪粒(Fecal pellets)因外表有碳酸盐附着可穿过盐梯度层沉积湖底,生物残体与浮游动物代谢产物构成了沉积有机物的物质基础。(3)表层沉积物平均含水量为66.70%,粒径0.004-0.02 mm范围内的颗粒物含量最大,占20.42%,其次为<0.004 mm的粘土,占4.53%。(4)表层沉积物总有机碳(TOC)平均含量为27.99 mg/g(干重),其中颗粒有机碳(POC)约为18.11 mg/g,占TOC的64.70%;在POC中,西藏拟溞粪粒贡献最大,约占POC的60.48%,占TOC的39.06%,占沉积物总量的1.12%,其次为西藏拟溞残体,占POC的38.85%。分析结果表明盐湖因其独特的水化学和生物学特征具有较强的沉积能力,以化学沉积为主的无机沉积及以西藏拟溞粪粒和残肢碎屑为主的有机沉积构成了该类型盐湖颗粒物沉降及沉积的主要过程。  相似文献   

19.
This study investigated the sources of organic matter and sediment depositional environment within fluviatile sediments of the Ganges–Meghna (GM) delta plains. The very low contents of trace metals e.g., chromium (Cr), cobalt (Co), scandium (Sc), and vanadium (V), organic carbon content, and cerium (Ce)-anomaly data of sediments indicate the redox conditions that fall within the boundary of oxic–anoxic condition, with dominantly oxic conditions in the sediment deposition environment. The higher atomic carbon nitrogen (C/N)a ratios and depleted stable carbon isotope ratio (δ13C) values for sediments from three study areas indicated the terrestrial sources of organic matter derived from C3 plant materials, whereas the contribution of organic materials from C4 vegetation and riverine productivity is low. Some silty sand samples exhibited lower (C/N)a ratios and enriched δ13C values in Sonargaon and Faridpur areas that are attributed to the adsorption of ammonium ions on clay minerals and the contribution of organic matter from C4 plants. Total sulfur over total organic carbon (TS/TOC) ratios in sediments of the Ganges delta reflect the nonmarine environments of sediment deposition. The lower ratios of syringyl to vanillyl phenols (S/V), cinnamyl to vanillyl phenols (C/V), and acid to aldehyde in vanillyl phenols (Ad/Al)v observed in Daudkandi indicate that the lignin in sediments derived from dominant woody gymnosperm sources and is very highly degraded. By contrast, the S/V ratio, C/V ratios, and [Ad/Al]v ratios in Faridpur suggest that the lignin in sediments derived from a mixture of woody and nonwoody angiosperm plant tissue contribution that underwent high degradation as well.  相似文献   

20.
Recent accelerated decay of discontinuous permafrost at the Stordalen Mire in northern Sweden has been attributed to increased temperature and snow depth, and has caused expansion of wet minerotrophic areas leading to significant changes in carbon cycling in the mire. In order to track these changes through time and evaluate potential forcing mechanisms, this paper analyses a peat succession and a lake sediment sequence from within the mire, providing a record for the last 100 years, and compares these with monitored climate and active layer thickness data. The peat core was analysed for testate amoebae to reconstruct changes in peatland surface moisture conditions and water table fluctuations. The lake sediment core was analysed by near infrared spectroscopy to infer changes in the total organic carbon (TOC) concentration of the lake‐water, and changes in δ13C and C, N and δ15N to track changes in the dissolved inorganic carbon (DIC) pool and the influence of diagenetic effects on sediment organic matter, respectively. Results showed that major shifts towards increased peat surface moisture and TOC concentration of the lake‐water occurred around 1980, one to two decades earlier than a temperature driven increase in active layer thickness. Comparison with monitored temperature and precipitation from a nearby climate station indicates that this change in peat surface moisture is related to June–September (JJAS) precipitation and that the increase in lake‐water TOC concentration reflects an increase in total annual precipitation. A significant depletion in 13C of sediment organic matter in the early 1980s probably reflects the effect of a single or a few consecutive years with anomalously high summer precipitation, resulting in elevated DIC content of the lake water, predominantly originating from increased export and subsequent respiration of organic carbon from the mire. Based on these results, it was not possible to link proxy data obtained on peat and lake‐sediment records directly to permafrost decay. Instead our data indicate that increased precipitation and anomalously high rainfall during summers had a significant impact on the mire and the adjacent lake ecosystem. We therefore propose that effects of increased precipitation should be considered when evaluating potential forcing mechanisms of recent changes in carbon cycling in the subarctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号