首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An international and interdisciplinary Radar Aeroecology Workshop was held at the National Weather Center on 5-6 March 2012 on the University of Oklahoma campus in Norman, OK, USA. The workshop brought together biologists, meteorologists, radar engineers and computer scientists from 22 institutions and four countries. A central motivation behind the Radar Aeroecology Workshop was to foster better communication and cross-disciplinary collaboration among a diverse spectrum of researchers, and promote a better understanding of the ecology of animals that move within and use the Earth's lower atmosphere (aerosphere).  相似文献   

2.
    
Migratory animals are affected by various factors during their journeys, and the study of animal movement by radars has been instrumental in revealing key influences of the environment on flying migrants. Radars enable the simultaneous tracking of many individuals of almost all sizes within the radar range during day and night, and under low visibility conditions. We review how atmospheric conditions, geographic features and human development affect the behavior of migrating insects and birds as recorded by radars. We focus on flight initiation and termination, as well as in‐flight behavior that includes changes in animal flight direction, speed and altitude. We have identified several similarities and differences in the behavioral responses of aerial migrants including an overlooked similarity in the use of thermal updrafts by very small (e.g. aphids) and very large (e.g. vultures) migrants. We propose that many aerial migrants modulate their migratory flights in relation to the interaction between atmospheric conditions and geographic features. For example, aerial migrants that encounter crosswind may terminate their flight or continue their migration and may also drift or compensate for lateral displacement depending on their position (over land, near the coast or over sea). We propose several promising directions for future research, including the development and application of algorithms for tracking insects, bats and large aggregations of animals using weather radars. Additionally, an important contribution will be the spatial expansion of aeroecological radar studies to Africa, most of Asia and South America where no such studies have been undertaken. Quantifying the role of migrants in ecosystems and specifically estimating the number of departing birds from stopover sites using low‐elevation radar scans is important for quantifying migrant–habitat relationships. This information, together with estimates of population demographics and migrant abundance, can help resolve the long‐term dynamics of migrant populations facing large‐scale environmental changes.  相似文献   

3.
    
Weather surveillance radars are increasingly used for monitoring the movements and abundances of animals in the airspace. However, analysis of weather radar data remains a specialised task that can be technically challenging. Major hurdles are the difficulty of accessing and visualising radar data on a software platform familiar to ecologists and biologists, processing the low‐level data into products that are biologically meaningful, and summarizing these results in standardized measures. To overcome these hurdles, we developed the open source R package bioRad, which provides a toolbox for accessing, visualizing and analyzing weather radar data for biological studies. It provides functionality to access low‐level radar data, process these data into meaningful biological information on animal speeds and directions at different altitudes in the atmosphere, visualize these biological extractions, and calculate further summary statistics. The package aims to standardize methods for extracting and reporting biological signals from weather radars. Here we describe a roadmap for analyzing weather radar data using bioRad. We also define weather radar equivalents for familiar measures used in the field of migration ecology, such as migration traffic rates, and recommend several good practices for reporting these measures. The bioRad package integrates with low‐level data from both the European radar network (OPERA) and the radar network of the United States (NEXRAD). bioRad aims to make weather radar studies in ecology easier and more reproducible, allowing for better inter‐comparability of studies.  相似文献   

4.
5.
    
Open landfills seem to be playing an increasing role as target feeding areas for several species, not only in their breeding areas or during the winter, but also during the migration period. Evaluating the extent to which landfill sites are used by migrants is crucial to understanding their role in driving stopover decisions during migration, and in the potential health risks linked to feeding on refuse. The aim of this study was to evaluate the role of two open landfills located just before (France) and after (Spain) the East‐Atlantic flyway enters Iberia through the western Pyrenees as potentially important stopover sites for the White Stork populations moving along this route. Overall, we detected that these sites were used by storks that had been ringed from many western European breeding populations, mainly during the migration period, but also in winter. The mean distance between the stork breeding/ringing origin and the landfill sites increased from summer to winter, suggesting that storks breeding further away pass through Iberia later in the season, reflecting population‐specific timing of migration. During the autumn migration period (August–September), the first encountered landfill in France was estimated to be used by c. 1200 storks, and the other in Spain by 4000 storks. Our study hence contributes to a better understanding of the current and potentially hazardous role played by landfill sites in White Stork ecology, which is essential in order to provide management recommendations, and to evaluate the consequences of proposed open landfill closures in Europe.  相似文献   

6.
    
Current climate models and observations indicate that atmospheric circulation is being affected by global climate change. To assess how these changes may affect nocturnally migrating bird populations, we need to determine how current patterns of wind assistance at migration altitudes will be enhanced or reduced under future atmospheric conditions. Here, we use information compiled from 143 weather surveillance radars stations within the contiguous United States to estimate the daily altitude, density, and direction of nocturnal migration during the spring and autumn. We intersected this information with wind projections to estimate how wind assistance is expected to change during this century at current migration altitudes. The prevailing westerlies at midlatitudes are projected to increase in strength during spring migration and decrease in strength to a lesser degree during autumn migration. Southerly winds will increase in strength across the continent during both spring and autumn migration, with the strongest gains occurring in the center of the continent. Wind assistance is projected to increase across the central (0.44 m/s; 10.1%) and eastern portions of the continent (0.32 m/s; 9.6%) during spring migration, and wind assistance is projected to decrease within the central (0.32 m/s; 19.3%) and eastern portions of the continent (0.17 m/s; 6.6%) during autumn migration. Thus, across a broad portion of the continent where migration intensity is greatest, the efficiency of nocturnal migration is projected to increase in the spring and decrease in the autumn, potentially affecting time and energy expenditures for many migratory bird species. These findings highlight the importance of placing climate change projections within a relevant ecological context informed through empirical observations, and the need to consider the possibility that climate change may generate both positive and negative implications for natural systems.  相似文献   

7.
    
Radar is at the forefront for the study of broad‐scale aerial movements of birds, bats and insects and related issues in biological conservation. Radar techniques are especially useful for investigating species which fly at high altitudes, in darkness, or which are too small for applying electronic tags. Here, we present an overview of radar applications in biological conservation and highlight its future possibilities. Depending on the type of radar, information can be gathered on local‐ to continental‐scale movements of airborne organisms and their behaviour. Such data can quantify flyway usage, biomass and nutrient transport (bioflow), population sizes, dynamics and distributions, times and dimensions of movements, areas and times of mass emergence and swarming, habitat use and activity ranges. Radar also captures behavioural responses to anthropogenic disturbances, artificial light and man‐made structures. Weather surveillance and other long‐range radar networks allow spatially broad overviews of important stopover areas, songbird mass roosts and emergences from bat caves. Mobile radars, including repurposed marine radars and commercially dedicated ‘bird radars’, offer the ability to track and monitor the local movements of individuals or groups of flying animals. Harmonic radar techniques have been used for tracking short‐range movements of insects and other small animals of conservation interest. However, a major challenge in aeroecology is determining the taxonomic identity of the targets, which often requires ancillary data obtained from other methods. Radar data have become a global source of information on ecosystem structure, composition, services and function and will play an increasing role in the monitoring and conservation of flying animals and threatened habitats worldwide.  相似文献   

8.
9.
    
Although radar has been used in studies of bird migration for 60 years, there is still no network in Europe for comprehensive monitoring of bird migration. Europe has a dense network of military air surveillance radars but most systems are not directly suitable for reliable bird monitoring. Since the early 1990s, Doppler radars and wind profilers have been introduced in meteorology to measure wind. These wind measurements are known to be contaminated with insect and bird echoes. The aim of the present research is to assess how bird migration information can be deduced from meteorological Doppler radar output. We compare the observations on migrating birds using a dedicated X‐band bird radar with those using a C‐band Doppler weather radar. The observations were collected in the Netherlands, from 1 March to 22 May 2003. In this period, the bird radar showed that densities of more than one bird per km3 are present in 20% of all measurements. Among these measurements, the weather radar correctly recognized 86% of the cases when birds were present; in 38% of the cases with no birds detected by the bird radar, the weather radar claimed bird presence (false positive). The comparison showed that in this study reliable altitudinal density profiles of birds cannot be obtained from the weather radar. However, when integrated over altitude, weather radar reflectivity is correlated with bird radar density. Moreover, bird flight speeds from both radars show good agreement in 78% of cases, and flight direction in 73% of cases. The usefulness of the existing network of weather radars for deducing information on bird migration offers a great opportunity for a European‐wide monitoring network of bird migration.  相似文献   

10.
    
With timely allocated movement phases, mobile organisms can match their space‐use with the seasonality of the environment and thereby optimise their resource utilisation over time. Long‐distance avian migrants are known to move with the seasonal dynamics on an annual basis, but how individuals respond to seasonality within their tropical non‐breeding range has been less studied. Here we analyse the movement pattern of a highly mobile aerial insectivorous bird, the pallid swift Apus pallidus, and its association with the local habitat phenology during the non‐breeding period, using individual‐based light‐level geolocation. We extracted timing and location of 21 birds’ residence periods, as well as characteristics of the intervening movements, such as distance and speed. We used time series of precipitation and vegetation data for each residence area to extract the timing of the local end of the rainy season and the onset of the dry season. The pallid swifts repeatedly upgraded their habitat by undertaking 2–5 intra‐tropical migrations correlated with the withdrawal of the rains and the onset of the local dry season. The birds arrived to the sites on average 12 days after rains ended and departed about two weeks after the onset of dry season suggesting that the birds closely tracked a spatiotemporal window presumably timed with optimal foraging conditions. Our results provide insights in the ways Palaearctic–African migrants respond to the asynchronous phenology within their sub‐Saharan non‐breeding range. We confirmed that pallid swifts actively respond to deteriorating conditions by repeated upgrades in habitat quality, which likely have substantial consequences for an individual's access to an essential, spatiotemporally ephemeral food resource. However, the pallid swifts did not surf an apparent resource wave per se as would be expected in a highly mobile species, indicating that also other factors, such as spatial patchiness of resources, may influence the movement decision.  相似文献   

11.
Many migratory bird species, including the barn swallow (Hirundo rustica), have advanced their arrival date at Northern Hemisphere breeding grounds, showing a clear biotic response to recent climate change. Earlier arrival helps maintain their synchrony with earlier springs, but little is known about the associated changes in phenology at their non-breeding grounds. Here, we examine the phenology of barn swallows in South Africa, where a large proportion of the northern European breeding population spends its non-breeding season. Using novel analytical methods based on bird atlas data, we show that swallows first arrive in the northern parts of the country and gradually appear further south. On their north-bound journey, they leave South Africa rapidly, resulting in mean stopover durations of 140 days in the south and 180 days in the north. We found that swallows are now leaving northern parts of South Africa 8 days earlier than they did 20 years ago, and so shortened their stay in areas where they previously stayed the longest. By contrast, they did not shorten their stopover in other parts of South Africa, leading to a more synchronized departure across the country. Departure was related to environmental variability, measured through the Southern Oscillation Index. Our results suggest that these birds gain their extended breeding season in Europe partly by leaving South Africa earlier, and thus add to scarce evidence for phenology shifts in the Southern Hemisphere.  相似文献   

12.
13.
    
Wind has a significant yet complex effect on bird migration speed. With prevailing south wind, overall migration is generally faster in spring than in autumn. However, studies on the difference in airspeed between seasons have shown contrasting results so far, in part due to their limited geographical or temporal coverage. Using the first full‐year weather radar data set of nocturnal bird migration across western Europe together with wind speed from reanalysis data, we investigate variation of airspeed across season. We additionally expand our analysis of ground speed, airspeed, wind speed, and wind profit variation across time (seasonal and daily) and space (geographical and altitudinal). Our result confirms that wind plays a major role in explaining both temporal and spatial variabilities in ground speed. The resulting airspeed remains relatively constant at all scales (daily, seasonal, geographically and altitudinally). We found that spring airspeed is overall 5% faster in Spring than autumn, but we argue that this number is not significant compared to the biases and limitation of weather radar data. The results of the analysis can be used to further investigate birds'' migratory strategies across space and time, as well as their energy use.  相似文献   

14.
    
Organisms have been shifting their timing of life history events (phenology) in response to changes in the emergence of resources induced by climate change. Yet understanding these patterns at large scales and across long time series is often challenging. Here we used the US weather surveillance radar network to collect data on the timing of communal swallow and martin roosts and evaluate the scale of phenological shifts and its potential association with temperature. The discrete morning departures of these aggregated aerial insectivores from ground-based roosting locations are detected by radars around sunrise. For the first time, we applied a machine learning algorithm to automatically detect and track these large-scale behaviors. We used 21 years of data from 12 weather surveillance radar stations in the Great Lakes region to quantify the phenology in roosting behavior of aerial insectivores at three spatial levels: local roost cluster, radar station, and across the Great Lakes region. We show that their peak roosting activity timing has advanced by 2.26 days per decade at the regional scale. Similar signals of advancement were found at the station scale, but not at the local roost cluster scale. Air temperature trends in the Great Lakes region during the active roosting period were predictive of later stages of roosting phenology trends (75% and 90% passage dates). Our study represents one of the longest-term broad-scale phenology examinations of avian aerial insectivore species responding to environmental change and provides a stepping stone for examining potential phenological mismatches across trophic levels at broad spatial scales.  相似文献   

15.
Migration is a common strategy used by birds that breed in seasonal environments. The patterns and determinants of migration routes, however, remain poorly understood. Recent empirical analyses have demonstrated that the locations of two North America migration flyways (eastern and western) shift seasonally, reflecting the influence of looped migration strategies. For the eastern but not western flyway, seasonal variation in atmospheric circulation has been identified as an explanation. Here, we test an alternative explanation based on the phenology of ecological productivity, which may be of greater relevance in western North America, where phenology is more broadly dictated by elevation. Migrants in the western flyway selected lower-elevation spring routes that were wetter, greener and more productive, and higher-elevation autumn routes that were less green and less productive, but probably more direct. Migrants in the eastern flyway showed little season variation but maintained associations with maximum regional greenness. Our findings suggest the annual phenology of ecological productivity is associated with en route timing in both flyways, and the spring phenology of ecological productivity contributes to the use of looped strategies in the western flyway. This fine-tuned spatial synchronization may be disrupted when changing climate induces a mismatch between food availability and needs.  相似文献   

16.
    
Traditionally, species richness, species diversity, total count, biomass, energy consumption and the Ramsar ‘1% threshold’ have been used to assess the importance of wetlands for waterbirds. Designation of wetlands of international importance (Ramsar sites) based on waterbirds has focused on those species meeting the Ramsar 1% population threshold levels. These levels prioritise a subset of species as being important, with little or no consideration to the contributions of the remaining species’ populations. In this paper, we evaluate and further describe a quantitative method to assess wetland avifaunal importance. Termed the Waterbird Conservation Value (WCV), this index sums the ratio of each species’ abundance to its published 1% threshold across all species to give an overall measure of the ‘value’ of the waterbirds at a wetland. Large values indicate that large proportions of the total populations of waterbird species are present at the wetland. Indices can be evaluated at site and species levels. The WCV is a more nuanced approach, sensitive to actual species’ abundance rather than counts of ‘1% threshold’ species and considers all species in the assessment. The outputs of the WCV index are demonstrated and discussed using a case study from three regions within the East Atlantic flyway.  相似文献   

17.
Angel  M.V.  Pugh  P.R. 《Hydrobiologia》2000,440(1-3):161-179
Analyses of day/night changes in the bathymetric distribution of micronektonic biomass at 16 stations in the northeastern Atlantic, sampled between 1978 and 1994, provided quantitative estimates of the organic carbon fluxes associated with diel vertical migration of individual taxa of micronekton. Gelatinous taxa contributed 50–80% of the integrated standing crop by volume but, apart from tunicates, contributed relatively little to the active migratory fluxes when expressed in terms of carbon. Total micronektonic migratory fluxes into the upper 200 m ranged from 12.5 to 58 mgC per m2. At 15 stations, fish and pteropods provided 50–80% of the fluxes into the upper 100, 200 and 400 m. At one station, tunicates (pyrosomes) contributed substantially. Wherever tunicates or the medusa Pelagia were swarming, migrations by other taxa appear to be suppressed. The mean proportions of the stock (in terms of biomass) of each of the dominant migratory taxa entering and leaving the upper 100 m were 23% for tunicates, 18% for fish, 22% for pteropods, 8% for decapod crustaceans and 23% for euphausiids. The maximum proportions for these five taxa were 90%, 60%, 75%, 25% and 75%, respectively. Similar estimates of the mean fluxes into and out of the upper 400 m were generally higher: 19% for tunicates, 39% for fish, 28% for pteropods, 49% for decapods and 55% for euphausiids; the respective maxima were 99%, 74%, 99%, 72% and 91%. It is estimated for fish that if these migrations occur throughout the year, they will result in an active carbon export (both POC and DOC) from the wind-mixed layer and immediate sub-thermocline depths of about 500% of the mean annual standing stock. If this estimate can be extended to other taxa, then the material fluxes resulting from these active migrations will be quantitatively similar to those resulting from the deposition of phytodetritus at temperate latitudes.  相似文献   

18.
    
Timing is crucial in seasonal environments. Passerine birds typically use a combination of physiological mechanisms and environmental cues to ensure that breeding, moult and migration occur without major temporal overlap and under the most favourable conditions. However, late in the breeding season some individuals initiate additional clutches , whereas others initiate moult. Such alternative strategies are thought to reflect trade‐offs between reproductive benefits and timely investment in maintenance and survival. The degree of seasonal plasticity differs between species, depending on the mechanisms that govern their annual routine. Migrants are generally under pressure to complete breeding and moult before the autumn departure and often show little plasticity. We studied seasonal plasticity of breeding and moult schedules in the European Stonechat Saxicola rubicola. This species, an obligate short‐distance migrant in Central Europe, sometimes initiates late clutches after typically at least two earlier breeding attempts. Based on life‐history theory and on observations in captivity, which revealed photoperiodic regulation of breeding and moult, we predicted relatively little seasonal plasticity in Stonechats. We further predicted that reproductive gains of late breeders should be offset by reduced survival. These predictions were tested on long‐term field data, using Underhill–Zucchini models to estimate moult. Late breeding occurred in c. 40% of pairs and increased their reproductive success by a third. Both sexes modified moult timing but in different ways. Late breeding females postponed moult approximately until chick independence without compensating for delay by faster moult. Males started moult on time and overlapped it with breeding, associated with markedly slowed plumage change. Sex differences in moult score increased with lay date, but due to their respective modifications, both sexes delayed moult completion. Nonetheless, we could not detect any evidence for survival costs of late breeding. Breeding and moult of European Stonechats appear relatively flexible, despite migratory schedules and photoperiodic programs for seasonal timing. Individuals can modify seasonal behaviour in late summer, presumably depending on their condition, and may profit considerably from extended breeding.  相似文献   

19.
    
Parturition timing has long been a topic of interest in ungulate research. However, few studies have examined parturition timing at fine scale (e.g., <1 day). Predator activity and environmental conditions can vary considerably with diel timing, which may result in selective pressure for parturition to occur during diel times that maximize the likelihood of neonate survival. We monitored parturition events and early-life survival of elk (Cervus canadensis) and mule deer (Odocoileus hemionus) in Utah, USA to better understand diel timing of parturition in temperate ungulates. Diel timing of parturition was moderately synchronous among conspecifics and influenced by environmental variables on the date of parturition. For elk, parturition events were most common during the morning crepuscular period and generally occurred later (i.e., closer to 12:00) when a relatively large proportion of the moon was illuminated. For mule deer, parturition events were most common during the diurnal period and generally occurred later (i.e., closer to 15:00) on cold, wet dates. Diel timing of parturition did not influence neonate survival, but larger datasets may be required to verify the apparent lack of influence. Although additional work could evaluate alternative variables that might affect parturition timing, our data provide an improved and finer scale understanding of reproductive ecology and phenology in ungulates.  相似文献   

20.
Liu Y  Keller I  Heckel G 《Heredity》2012,109(2):108-116
Long-distance migrants are, by definition, highly mobile but it is poorly understood if this leads to high rates of gene flow and an essentially panmictic global population structure. Genetic divergence in migratory species could be promoted, for example, by fidelity to distinct migratory pathways. In this study, we investigate the population genetic structure of tufted duck (Aythya fuligula), a long-distance migrant with a largely continuous breeding distribution across Eurasia. Distinct, longitudinally oriented flyways have been postulated based on geographically disjunct wintering areas and are supported by evidence from ringing data. We generated sequences of the mitochondrial control region and multi-locus microsatellite genotypes for several hundreds of samples from the European and Asian breeding and wintering grounds including some individuals infected with highly pathogenic avian influenza virus H5N1. Significant differentiation between breeding sites was observed for both marker types, but F(ST) values were approximately 10 times higher for maternally inherited mitochondrial DNA than for biparentally transmitted nuclear markers. The genetic differentiation between the postulated European and Asian flyways was similar to that observed within continents and, in general, genetic divergence was not associated with geographic distance. Neither marker type showed evidence of genetic substructure among aggregations on the European wintering grounds. Our results suggest some breeding site fidelity, especially in females, but extensive population admixture on the wintering grounds. Several scenarios may explain the observed lack of genetic divergence between Europe and Asia including non-equilibrium conditions following a recent range expansion or contemporary gene flow across the postulated migratory divides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号