首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
3.
Cover Caption     
《Insect Science》2013,20(1):i-i
RNA interference (RNAi) has been considered as a potential strategy for insect pest control especially for sucking insects, for example, planthoppers, aphids and psyllids. Metamorphosis is a unique developmental model of insects. Therefore, using RNAi technology, regulating the key genes during insect growth and development will not affect other organisms. This strategy probably realizes biological and ecological safety of insect pest control. Photo in cover shows a brown planthopper Nilaparvata lugens molting. Photo provided by Prof. Xue‐Xia Miao.  相似文献   

4.
5.
6.
沈修婧  杨广 《昆虫知识》2016,(3):446-455
RNAi作为分子生物学的一种重要技术,在昆虫基因功能和功能基因组研究中得到广泛应用,同时,有关昆虫RNAi的机制也受到了大家的关注。近年来的研究结果表明,昆虫RNAi的通路与其他动物相同,根据引起基因沉默的RNA分子的类型,可以分为siRNA、miRNA和piRNA 3种不同的通路。昆虫RNAi通路中的核心元件包括了:(1)行使切割作用的RNaseⅢ家族成员Drosha和Dicer;(2)用来降解目的 mRNA的Argonaute蛋白;(3)dsRNA结合蛋白Pasha、R2D2和Loquacious。了解昆虫RNAi的通路及其核心元件,有助于我们更好地理解昆虫RNAi的分子机制和改进实现RNAi的方法,对促进昆虫RNAi技术的研究及其在害虫防控中的应用具有指导意义。  相似文献   

7.
8.
9.
Silencing of aphid genes by dsRNA feeding from plants   总被引:4,自引:0,他引:4  

Background

RNA interference (RNAi) is a valuable reverse genetics tool to study gene function in various organisms, including hemipteran insects such as aphids. Previous work has shown that RNAi-mediated knockdown of pea aphid (Acyrthosiphon pisum) genes can be achieved through direct injection of double-stranded RNA (dsRNA) or small-interfering RNAs (siRNA) into the pea aphid hemolymph or by feeding these insects on artificial diets containing the small RNAs.

Methodology/Principal Findings

In this study, we have developed the plant-mediated RNAi technology for aphids to allow for gene silencing in the aphid natural environment and minimize handling of these insects during experiments. The green peach aphid M. persicae was selected because it has a broad plant host range that includes the model plants Nicotiana benthamiana and Arabidopsis thaliana for which transgenic materials can relatively quickly be generated. We targeted M. persicae Rack1, which is predominantly expressed in the gut, and M. persicae C002 (MpC002), which is predominantly expressed in the salivary glands. The aphids were fed on N. benthamiana leaf disks transiently producing dsRNA corresponding to these genes and on A. thaliana plants stably producing the dsRNAs. MpC002 and Rack-1 expression were knocked down by up to 60% on transgenic N. benthamiana and A. thaliana. Moreover, silenced M. persicae produced less progeny consistent with these genes having essential functions.

Conclusions/Significance

Similar levels of gene silencing were achieved in our plant-mediated RNAi approach and published silencing methods for aphids. Furthermore, the N. benthamiana leaf disk assay can be developed into a screen to assess which genes are essential for aphid survival on plants. Our results also demonstrate the feasibility of the plant-mediated RNAi approach for aphid control.  相似文献   

10.
11.
傅淑  刘昭霞  陈金芝  孙庚晓  孙翠英  杨广 《昆虫学报》2019,62(12):1448-1468
摘要: 应用植物介导的昆虫RNAi进行害虫防治近10年来受到了广泛的关注,其作用机理包括两个阶段,首先是害虫靶标基因dsRNA在植物体内的表达、运输和贮存,然后是害虫取食该植物后,dsRNA特异性抑制害虫体内靶标基因的表达。目前,植物介导的昆虫RNAi主要针对鳞翅目、鞘翅目和同翅目害虫,可以引起害虫生长发育的异常,导致死亡/繁殖力下降,甚至影响到其子代的生长。影响植物介导昆虫RNAi效率的因素主要包括害虫靶标基因的选择、dsRNA靶定位点及长度、植物表达dsRNA载体的结构和转基因植物的遗传转化方式等。植物介导昆虫RNAi防治害虫的策略也面临着潜在的安全性问题,如转基因植物安全性和RNAi潜在脱靶性等。随着植物介导昆虫RNAi技术的成熟,该方法有望成为害虫防治的新策略。  相似文献   

12.

Background

RNA silencing is an important mechanism for regulation of endogenous gene expression and defense against genomic intruders in plants. This natural defense system was adopted to generate virus-resistant plants even before the mechanism of RNA silencing was unveiled. With the clarification of that mechanism, transgenic antiviral plants were developed that expressed artificial virus-specific hairpin RNAs (hpRNAs) or microRNAs (amiRNAs) in host plants. Previous works also showed that plant-mediated RNA silencing technology could be a practical method for constructing insect-resistant plants by expressing hpRNAs targeting essential genes of insects.

Methodology/Principal findings

In this study, we chose aphid Myzus persicae of order Hemiptera as a target insect. To screen for aphid genes vulnerable to attack by plant-mediated RNA silencing to establish plant aphid resistance, we selected nine genes of M. persicae as silencing targets, and constructed their hpRNA-expressing vectors. For the acetylcholinesterase 2 coding gene (MpAChE2), two amiRNA-expressing vectors were also constructed. The vectors were transformed into tobacco plants (Nicotiana tabacum cv. Xanti). Insect challenge assays showed that most of the transgenic plants gained aphid resistance, among which those expressing hpRNAs targeting V-type proton ATPase subunit E-like (V-ATPaseE) or tubulin folding cofactor D (TBCD) genes displayed stronger aphicidal activity. The transgenic plants expressing amiRNAs targeting two different sites in the MpAChE2 gene exhibited better aphid resistance than the plants expressing MpAChE2-specific hpRNA.

Conclusions/Significance

Our results indicated that plant-mediated insect-RNA silencing might be an effective way to develop plants resistant to insects with piercing-sucking mouthparts, and both the selection of vulnerable target genes and the biogenetic type of the small RNAs were crucial for the effectiveness of aphid control. The expression of insect-specific amiRNA is a promising and preferable approach to engineer plants resistant to aphids and, possibly, to other plant-infesting insects.  相似文献   

13.
14.
Abstract Numerous studies indicate that target gene silencing by RNA interference (RNAi) could lead to insect death. This phenomenon has been considered as a potential strategy for insect pest control, and it is termed RNAi‐mediated crop protection. However, there are many limitations using RNAi‐based technology for pest control, with the effectiveness target gene selection and reliable double‐strand RNA (dsRNA) delivery being two of the major challenges. With respect to target gene selection, at present, the use of homologous genes and genome‐scale high‐throughput screening are the main strategies adopted by researchers. Once the target gene is identified, dsRNA can be delivered by micro‐injection or by feeding as a dietary component. However, micro‐injection, which is the most common method, can only be used in laboratory experiments. Expression of dsRNAs directed against insect genes in transgenic plants and spraying dsRNA reagents have been shown to induce RNAi effects on target insects. Hence, RNAi‐mediated crop protection has been considered as a potential new‐generation technology for pest control, or as a complementary method of existing pest control strategies; however, further development to improve the efficacy of protection and range of species affected is necessary. In this review, we have summarized current research on RNAi‐based technology for pest insect management. Current progress has proven that RNAi technology has the potential to be a tool for designing a new generation of insect control measures. To accelerate its practical application in crop protection, further study on dsRNA uptake mechanisms based on the knowledge of insect physiology and biochemistry is needed.  相似文献   

15.
Horizontal gene transfer is widespread in insects bearing intracellular symbionts. Horizontally transferred genes (HTGs) are presumably involved in amino acid synthesis in sternorrhynchan insects. However, their role in insect-symbiont interactions remains largely unknown. We found symbionts Portiera, Hamiltonella and Rickettsia possess most genes involved in lysine synthesis in the whitefly Bemisia tabaci MEAM1 although their genomes are reduced. Hamiltonella maintains a nearly complete lysine synthesis pathway. In contrast, Portiera and Rickettsia require the complementation of whitefly HTGs for lysine synthesis and have lysE, encoding a lysine exporter. Furthermore, each horizontally transferred lysine gene of ten B. tabaci cryptic species shares an evolutionary origin. We demonstrated that Hamiltonella did not alter the titers of Portiera and Rickettsia or lysine gene expression of Portiera, Rickettsia and whiteflies. Hamiltonella also did not impact on lysine levels or protein localization in bacteriocytes harboring Portiera and ovaries infected with Rickettsia. Complementation with whitefly lysine synthesis HTGs rescued E. coli lysine gene knockout mutants. Silencing whitefly lysA in whiteflies harboring Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia without influencing the expression of Hamiltonella lysA. Furthermore, silencing whitefly lysA in whiteflies lacking Hamiltonella reduced lysine levels, adult fecundity and titers of Portiera and Rickettsia in ovarioles. Therefore, we, for the first time, demonstrated an essential amino acid lysine synthesized through HTGs is important for whitefly reproduction and fitness of both obligate and facultative symbionts, and it illustrates the mutual dependence between whitefly and its two symbionts. Collectively, this study reveals that acquisition of horizontally transferred lysine genes contributes to coadaptation and coevolution between B. tabaci and its symbionts.  相似文献   

16.
病虫害严重威胁着作物安全生产。近年来,在RNA干扰(RNA interference,RNAi)基础上开发病虫害防控策略的研究得到越来越多的关注。RNAi是真核生物体内的一种基因调控过程,如何将外源RNA有效地递送到靶标生物体内,是病虫害RNAi技术能否成功的关键之一。国内外学者进行了大量研究和实践,探究影响病虫害吸收和传递外源双链RNA(double-stranded RNA,dsRNA)的因素,探索提高dsRNA递送效率的方法,取得了重要的进展。本文对相关研究进行了梳理,简述了影响病虫害对dsRNA吸收和递送的因素,对外源RNA的递送策略进行了综述,讨论了纳米颗粒复合物在dsRNA递送中的应用前景,以期为相关研究提供参考。  相似文献   

17.
18.
RNA interference (RNAi) is a cellular process by which an mRNA is targeted for degradation by a small interfering RNA that contains a strand complementary to a fragment of the target mRNA, resulting in sequence specific inhibition of gene expression. The discovery of RNAi enabled the use of loss‐of‐function analyses in many non‐model insects other than Drosophila to elucidate the roles of specific genes. The RNAi approach has been widely used on insects in several fields, including embryogenesis, pattern formation, reproduction, biosynthesis and behavior. The increasing availability of insect genomes has made the RNAi technique an indispensable technique for characterizing gene functions in insects. Here we review the current status of RNAi‐based experiments in insects and the applications of RNAi for species‐specific insecticides, focusing on non‐drosophilid insects. We also identify future applications for RNAi‐based studies in Entomology.  相似文献   

19.
昆虫的RNA干扰   总被引:2,自引:0,他引:2  
杨广  尤民生  赵伊英  刘春辉 《昆虫学报》2009,52(10):1156-1162
RNA干扰(RNAi)是一种强有力的分子生物学技术, 在昆虫研究中得到了较多的应用。目前, RNAi技术主要应用于昆虫功能基因和功能基因组研究, 已在多个目的19种昆虫上实现了RNAi。在昆虫上实现RNAi的方法主要有注射、浸泡、喂食、转基因和病毒介导等方法, 这些方法各有特点, 其中喂食法因其简单而最有应用前景。昆虫RNAi的系统性较为复杂, 只有部分昆虫具有RNAi的系统性。昆虫中RNAi信号传导的基因可能是sid-1, 但昆虫RNAi的系统性机理还不是很清楚。转基因植物产生的dsRNA实现了对作物的保护, 证实了RNAi技术可用于害虫控制, 为害虫控制开辟了新领域。昆虫的RNAi研究处在起步阶段, 研究昆虫RNAi的机理, 特别是RNAi在昆虫体内的系统性扩散机理, 改进实现RNAi的方法, 提高RNAi技术在昆虫研究中的应用, 有利于昆虫基因功能鉴定和害虫控制, 促进昆虫学科的发展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号