首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
The rates of incorporation of palmitate from palmitoyl CoA into lecithin or sphingomyelin by homogenates of neural tissue of rhesus monkeys were greatly increased by the addition of lysolecithin or sphingosinephosphorylcholine (SPC). Labelled lysolecithin and SPC were also incorporated into lecithin and sphingomyelin. There was a low level of nonenzymic sphingomyelin formation from SPC and palmitoyl CoA. Choline from CDP-choline was rapidly incorporated into lecithin and slowly into SPC and sphingomyelin by homogenates of pons. The activity of lysolecithin acyl hydrolase (EC 3.1.1.5) was high throughout life in homogenates of pons and cerebral cortex. The rate of utilization of palmitoyl CoA and lysolecithin for phospholipid synthesis was higher in neural tissue from fetal and neonatal monkeys than from adults. Lysolecithin was acylated most rapidly with palmitoleic, linoleic and arachidonic acids. All phospholipid metabolic activities were higher in the cerebral cortex than in the pons.  相似文献   

2.
Maguire JJ  Kuc RE  Wiley KE  Kleinz MJ  Davenport AP 《Peptides》2004,25(10):1767-1774
We detected urotensin-II-like immunoreactivity in the endothelium of normal human blood vessels from heart, kidney, placenta, adrenal, thyroid and umbilical cord. Immunoreactivity was also detected in endocardial endothelial and kidney epithelial cells. In atherosclerotic coronary artery, immunoreactivity localized to regions of macrophage infiltration. Urotensin-II constricted human atherosclerotic epicardial coronary arteries with pD2=10.58 +/- 0.46 (mean +/- S.E.M.) and Emax=11.4 +/- 4.2% KCl and small coronary arteries with pD2=9.25 +/- 0.38 and Emax=77 +/- 16% KCl. Small coronary arteries clearly exhibited a greater maximum response to urotensin-II than epicardial vessels. This enhanced responsiveness may be of importance in heart failure, where circulating concentrations of U-II are increased, or in atherosclerosis where focally up-regulated urotensin-II production may act down stream to produce significant vasospasm, compromising blood flow to the myocardium. We conclude that urotensin-II is a locally released vasoactive mediator that may be an important regulator of blood flow particularly to the myocardium and may have a specific role in human atherosclerosis.  相似文献   

3.
We report the synthesis and characterization of a novel thiourea derivative of sphingomyelin (AD2765). In vitro assays using pure enzyme and/or cell extracts revealed that this compound inhibited the hydrolysis of BODIPY-conjugated or 14C-labeled sphingomyelin by acid sphingomyelinase and Mg2+-dependent neutral sphingomyelinase. Studies in normal human skin fibroblasts further revealed that AD2765 was taken up by cells and inhibited the hydrolysis of BODIPY-conjugated sphingomyelin in situ. In situ and in vitro studies also showed that this compound inhibited the synthesis of sphingomyelin from BODIPY-conjugated ceramide. The specificity of AD2765 for enzymes involved in sphingomyelin metabolism was demonstrated by the fact that it had no effect on the hydrolysis of BODIPY-conjugated ceramide by acid ceramidase or on the synthesis of BODIPY-conjugated glucosylceramide from BODIPY-conjugated ceramide. The overall effect of AD2765 on sphingomyelin metabolism was concentration-dependent, and treatment of normal human skin fibroblasts or cancer cells with this compound at concentrations > 10 microM led to an increase in cellular ceramide and cell death. Thus, AD2765 might be used to manipulate sphingomyelin metabolism in various ways, potentially to reduce substrate accumulation in cells from types A and B Niemann-Pick disease patients, and/or to affect the growth of human cancer cells.  相似文献   

4.
Cardiovascular disease (CVD) is a serious comorbidity in nonalcoholic fatty liver disease (NAFLD). Since plasma ceramides are increased in NAFLD and sphingomyelin, a ceramide metabolite, is an independent risk factor for CVD, the role of ceramides in dyslipidemia was assessed using LDLR-/- mice, a diet-induced model of NAFLD and atherosclerosis. Mice were fed a standard or Western diet (WD), with or without myriocin, an inhibitor of ceramide synthesis. Hepatic and plasma ceramides were profiled and lipid and lipoprotein kinetics were quantified. Hepatic and intestinal expression of genes and proteins involved in insulin, lipid and lipoprotein metabolism were also determined. WD caused hepatic oxidative stress, inflammation, apoptosis, increased hepatic long-chain ceramides associated with apoptosis (C16 and C18) and decreased very-long-chain ceramide C24 involved in insulin signaling. The plasma ratio of ApoB/ApoA1 (proteins of VLDL/LDL and HDL) was increased 2-fold due to increased ApoB production. Myriocin reduced hepatic and plasma ceramides and sphingomyelin, and decreased atherosclerosis, hepatic steatosis, fibrosis, and apoptosis without any effect on oxidative stress. These changes were associated with decreased lipogenesis, ApoB production and increased HDL turnover. Thus, modulation of ceramide synthesis may lead to the development of novel strategies for the treatment of both NAFLD and its associated atherosclerosis.  相似文献   

5.
Abstract: We activated the death pathway in embryonic chick cerebral hemisphere neuron (E7CH) cultures with staurosporine (0.1–1.0 µ M ) and observed the morphological changes, DNA laddering patterns, and DNA fragmentation (determined by Hoechst 33258 dye) associated with apoptosis. N -Acylsphingosine (C2-ceramide), a soluble ceramide analogue, was also able to induce apoptosis in these cells with the same characteristics and in the same time frame. We then observed that staurosporine was effective in inducing hydrolysis of sphingomyelin to ceramide as measured by a threefold increase in ceramide mass and increased incorporation of [3H]-palmitate into ceramide, concurrent with activating the cell death program. Furthermore, the coaddition of a specific ceramidase inhibitor, oleoylethanolamine (15 µ M ), enhanced the formation of ceramide as well as the degree of DNA fragmentation and cell death. Exogenous addition of sphingomyelinase activated the death pathway whereas ceramide glycanase did not, and inhibitors of sphingomyelin or protein synthesis failed to block this type of killing. Our data suggest that the formation of ceramide from sphingomyelin is a key event in staurosporine-induced and potentially all programmed cell death.  相似文献   

6.
Lipogenesis was measured with glucose-2-(14)C and acetate-1-(14)C in the everted aortas of normal and atherosclerotic rabbits. More glucose-2-(14)C than acetate-1-(14)C was incorporated into lipids in both the normal and the atherosclerotic aorta. Radiocarbon from glucose-2-(14)C appeared mainly in triglycerides and phospholipids with a small amount in cholesteryl esters. Incorporation increased almost threefold with atherosclerosis, most of the radioactivity being in the glycerol moiety; radioactivity was predominantly in carbon 2 of glycerol. About 70% of the acetate-1-(14)C incorporated into phospholipids and triglycerides was in the fatty acids, and the remainder was in glyceride-glycerol; 98% of the radioactivity in cholesteryl esters was in the fatty acid moiety. Incorporation into cholesteryl esters was increased most during the development of atherosclerosis. Fatty acid synthesis was similar from both acetate-1-(14)C and the 2 carbon unit derived from glucose-2-(14)C, viz., predominantly de novo synthesis of fatty acids with 14 and 16 carbon atoms, and elongation for those of 18 carbons and longer.  相似文献   

7.
Aging leads to a proinflammatory state within the vasculature without disease, yet whether this inflammatory state occurs during atherogenesis remains unclear. Here, we examined how aging impacts atherosclerosis using Ldlr?/? mice, an established murine model of atherosclerosis. We found that aged atherosclerotic Ldlr?/? mice exhibited enhanced atherogenesis within the aorta. Aging also led to increased LDL levels, elevated blood pressure on a low‐fat diet, and insulin resistance after a high‐fat diet (HFD). On a HFD, aging increased a monocytosis in the peripheral blood and enhanced macrophage accumulation within the aorta. When we conducted bone marrow transplant experiments, we found that stromal factors contributed to age‐enhanced atherosclerosis. To delineate these stromal factors, we determined that the vasculature exhibited an age‐enhanced inflammatory response consisting of elevated production of CCL‐2, osteopontin, and IL‐6 during atherogenesis. In addition, in vitro cultures showed that aging enhanced the production of osteopontin by vascular smooth muscle cells. Functionally, aged atherosclerotic aortas displayed higher monocyte chemotaxis than young aortas. Hence, our study has revealed that aging induces metabolic dysfunction and enhances vascular inflammation to promote a peripheral monocytosis and macrophage accumulation within the atherosclerotic aorta.  相似文献   

8.
Sphingomyelin metabolites in vascular cell signaling and atherogenesis   总被引:5,自引:0,他引:5  
The atherosclerotic lesion most probably develops through a number of cellular events which implicate all vascular cell types and include synthesis of extracellular proteins, cell proliferation, differentiation and death. Sphingolipids and sphingolipid metabolizing enzymes may play important roles in atherogenesis, not only because of lipoprotein alterations but also by mediating a number of cellular events which are believed to be crucial in the development of the vascular lesions such as proliferation or cell death. Exogenous sphingolipids may mediate various biological effects such as apoptosis, mitogenesis or differentiation depending on the cell type. Moreover, several molecules present in the atherogenic lesion, such as oxidized LDL, growth factors or cytokines, which activate intracellular signaling pathways leading to vascular cell modifications, can stimulate sphingomyelin hydrolysis and generation of ceramide (and other metabolites as sphingosine-1-phosphate). Here we review the potential implication of the sphingomyelin/ceramide cycle in vascular cell signaling related to atherosclerosis, and more generally the role of sphingolipids in the events observed during the atherosclerotic process as cell differentiation, migration, adhesion, retraction, proliferation and death.  相似文献   

9.
We have studied the effect of long-term hyperlipemia and atherosclerosis in squirrel monkeys on the metabolism of lysolecithin-(14)C (1-palmitoyl-1'-(14)C sn-glycerol 3-phosphorylcholine) in order to explain elevated plasma and arterial concentrations of lysolecithin. The die-away curves of lysolecithin-(14)C from plasma and the timing of appearances of other (14)C-labeled moieties in plasma and other tissues demonstrated a complex pattern of metabolic reactions. There was a rapid equilibration of specific activities of lysolecithin of plasma, liver, and aortic intima plus inner media. The specific activities of lecithin peaked first in liver, then in plasma, and rose slowly in aortic intima plus inner media. The appearance of lecithin-(14)C in heart and skeletal muscle was also slower than in the liver and some other tissues. Triglycerides, and to a lesser extent, cholesteryl esters contained radioactivity. The concentrations of aortic lysolecithin in the atherosclerotic aortas were several times greater than comparable values for control aortas, and the time of equilibration of plasma and aorta lysolecithin-(14)C was much greater for the atherosclerotic group. The quantities of lysolecithin in plasma and in the pool of which the plasma was a part, were increased with hyperlipemia and atherosclerosis, as was the rate of lysolecithin production in the fast pool. Hyperlipemia was also associated with an early increase in plasma lecithin:cholesterol acyltransferase (LCAT) activity in vitro. Furthermore, nutritional hyperlipemia influenced the distribution of lysolecithin-(14)C and lecithin-(14)C between different plasma lipoproteins. The increase in concentrations of lysolecithin in the aorta occurred more slowly than that in plasma after we had induced hyperlipemia in the monkeys.  相似文献   

10.
We examined the effect of Niemann-Pick disease type 2 (NPC2) protein and some late endosomal lipids [sphingomyelin, ceramide and bis(monoacylglycero)phosphate (BMP)] on cholesterol transfer and membrane fusion. Of all lipid-binding proteins tested, only NPC2 transferred cholesterol at a substantial rate, with no transfer of ceramide, GM3, galactosylceramide, sulfatide, phosphatidylethanolamine, or phosphatidylserine. Cholesterol transfer was greatly stimulated by BMP, little by ceramide, and strongly inhibited by sphingomyelin. Cholesterol and ceramide were also significantly transferred in the absence of protein. This spontaneous transfer of cholesterol was greatly enhanced by ceramide, slightly by BMP, and strongly inhibited by sphingomyelin. In our transfer assay, biotinylated donor liposomes were separated from fluorescent acceptor liposomes by streptavidin-coated magnetic beads. Thus, the loss of fluorescence indicated membrane fusion. Ceramide induced spontaneous fusion of lipid vesicles even at very low concentrations, while BMP and sphingomyelin did so at about 20 mol% and 10 mol% concentrations, respectively. In addition to transfer of cholesterol, NPC2 induced membrane fusion, although less than saposin-C. In this process, BMP and ceramide had a strong and mild stimulating effect, and sphingomyelin an inhibiting effect, respectively. Note that the effects of the lipids on cholesterol transfer mediated by NPC2 were similar to their effect on membrane fusion induced by NPC2 and saposin-C.  相似文献   

11.
It has been shown that vesicles play a key role in the onset mechanism of aortic calcification related to cholesterol-induced atherosclerosis. This study using a rabbit model was conducted to determine whether cholesterol exerts a direct effect on vesicle's calcifiability. Inclusion of cholesterol in calcifying media stimulated ATP-initiated deposition of calcium in a dose-dependent manner by vesicles isolated from normal aortas using crude collagenase digestion. By contrast, cholesterol did not significantly affect ATP-promoted calcification if vesicles were isolated from atherosclerotic aortas. To determine whether high cholesterol levels in atherosclerotic vesicle preparations may have already maximized calcifying activity and therefore account for lack of the vesicle's response to the sterol, Fourier transform infrared spectroscopy (FT-IR) was used to compare the cholesterol contents in control and atherosclerotic vesicles. The spectral patterns revealed higher levels of cholesterol in vesicle preparations from atherosclerotic aortas than those from normal aortas. Removal of extra-vesicular cholesterol micelles from atherosclerotic vesicles by a relatively low centrifugal force sensitized the vesicles to cholesterol stimulation causing a 2-fold increase in calcifying activity. Of various oxidized forms of cholesterol tested, 7-keto and 6-keto cholesterol enhanced the activity by 2-fold. Altogether, these observations suggest that cholesterol and especially its oxidized forms may induce aortic calcification by directly enhancing the vesicle's ability to calcify.  相似文献   

12.
Sphingolipids, a large family of bioactive lipids, are implicated in stress responses, differentiation, proliferation, apoptosis, and other physiological processes. Aberrant plasma levels of sphingolipids contribute to metabolic disease, atherosclerosis, and insulin resistance. They are fairly evenly distributed in high density and apoB-containing lipoproteins (B-lps). Mechanisms involved in the transport of sphingolipids to the plasma are unknown. Here, we investigated the role of microsomal triglyceride transfer protein (MTP), required for B-lp assembly and secretion, in sphingolipid transport to the plasma. Abetalipoproteinemia patients with deleterious mutations in MTP and absence of B-lps had significantly lower plasma ceramide and sphingomyelin but normal hexosylceramide, lactosylceramide, and different sphingosines compared with unaffected controls. Furthermore, similar differential effects on plasma sphingolipids were seen in liver- and intestine-specific MTP knock-out (L,I-Mttp−/−) mice, suggesting that MTP specifically plays a role in the regulation of plasma ceramide and sphingomyelin. We hypothesized that MTP deficiency may affect either their synthesis or secretion. MTP deficiency had no effect on ceramide and sphingomyelin synthesis but reduced secretion from primary hepatocytes and hepatoma cells. Therefore, MTP is involved in ceramide and sphingomyelin secretion but not in their synthesis. We also found that MTP transferred these lipids between vesicles in vitro. Therefore, we propose that MTP might regulate plasma ceramide and sphingomyelin levels by transferring these lipids to B-lps in the liver and intestine and facilitating their secretion.  相似文献   

13.
14.
15.
Contents of sphingolipids (ceramide, sphingomyelin, gangliosides) and the composition of their sphingoid bases were studied in the transplantable rat nephroma-RA and in rat kidneys. The content of sphingomyelin was about 1.3-fold decreased and the content of ceramide was about 1.4-fold increased in the nephroma compared to normal kidneys, and this correlated with a 1.4-fold increased activity of neutral sphingomyelinase; however, the activity of the acidic isoform of the enzyme was virtually unchanged. The content of gangliosides was also increased in the nephroma. Ceramide and sphingomyelin of the nephroma, in addition to sphingosine, contained a significant amount of sphinganine, although a considerable amount of the latter was also found in the renal ceramide. The ratio sphingosine/sphinganine in sphingomyelins changed from 65:1 in kidneys to 5:1 in the nephroma. Thus, the biosynthesis of sphingoid bases seems to be disturbed in the transplantable rat nephroma-RA compared to normal kidneys.  相似文献   

16.
Glycosaminoglycans participate in several biological functions in the arterial wall through their specific structures. They undergo specific compositional and structural modifications during the development of vascular diseases. The present study was performed to determine the variations in the concentration and the structural characteristics of galactosaminoglycans--chondroitin sulfate (CS) and dermatan sulfate (DS)--during the progression of atherosclerosis and aneurysmal dilatation of the human abdominal aorta. The concentration of CS was increased 24% (p < or = 0.05) in atherosclerotic type II aortas, but it was significantly decreased (29%, p < or = 0.05) in atherosclerotic type V aortas and aneurysmal aortas (65%, p < or = 0.01). In contrast, the concentration of DS was almost constant in all stages of arterial disease examined. Significant structural alterations were detected in the disaccharide composition of galactosaminoglycans. The ratio of 6-sulfated to 4-sulfated disaccharides was increased in atherosclerotic type II aortas (4.0 instead of 3.1 in normal aortas) due to the marked increase of CS in this tissue. This ratio was significantly decreased in atherosclerotic type V and aneurysmal aortas (2.1 and 1.6, respectively) due to the significant reduction of CS in the respective tissues. In addition, significant decrease of the oversulfated disaccharides, which are mainly located in DS chains, was recorded in atherosclerotic and aneurysmal aortas. Particularly, deltadi-di(2,6)S were decreased 32% (p < or = 0.01) and 86% (p < or = 0.01) in atherosclerotic type II and V aortas and 88% (p < or = 0.01) in aneurysm. Deltadi-di(2,4)S were increased in atherosclerotic type II aortas (21%, p < or = 0.01), but significantly decreased in atherosclerotic type V (33%, p < or = 0.01) and aneurysmal aortas (56%, p < or = 0.01). The amounts of deltadi-di(4,6)S were not markedly affected in the diseased tissues. These results suggest that the concentration of galactosaminoglycans is differentially affected during the progression of atherosclerosis. Furthermore, the development of vascular disease is associated with specific structural modifications, especially with the significant reduction of particular types of oversulfated disaccharides, which may play essential biological roles in the arterial wall.  相似文献   

17.
Whole worms and/or homogenates of F. hepatica incorporate label from cytidine-5-diphospho[methyl-14C]choline,[1-14C]palmitoylCoA,[U- 14C]serine,[2-14C]methionine, [U-14C]glycine, [U-14C]threonine and [U-14C]aspartate into the various intermediates of sphingomyelin synthesis (ketosphinganine, sphinganine, sphingosine, ceramide and sphingomyelin). This suggests that sphingomyelin synthesis in F. hepatica occurs by a pathway similar to that found in mammals. However, there is some evidence that in F. hepatica 3-ketosphinganine may be N-acylated prior to reduction and dehydrogenation.  相似文献   

18.
Abstract: Ceramide generated from sphingomyelin has emerged as a new but conserved type of biologically active lipid. We previously found that endogenous sphingolipids are required for the normal growth of cultured cerebellar Purkinje neurons and that sphingomyelin is present abundantly in the somatodendritic region of these cells. To gain further insight into a potential role of the sphingomyelin/ceramide pathway, we investigated the effects of depletion of sphingolipids on the phenotypic growth and survival of immature Purkinje cells and the ability of ceramide or other sphingolipids to antagonize these effects. Inhibition of ceramide synthesis by ISP-1, a specific inhibitor of serine palmitoyltransferase, decreased cellular levels of sphingolipids. This treatment resulted in a decrease in cell survival accompanied by an induction of apoptotic cell death and aberrant dendritic differentiation of Purkinje cells with no detectable changes in other cerebellar neurons. Cell-permeable ceramides, sphingosine, or sphingomyelin overcame these abnormalities more effectively than other sphingolipids when added simultaneously with ISP-1. Exposure to bacterial sphingomyelinase in turn enhanced cell survival and dendritic branching complexity of Purkinje cells at different optimal concentrations. Furthermore, cell-permeable ceramide acted synergistically with the neurotrophin family, which has been previously shown to support Purkinje cell survival. These observations suggest that ceramide is a requisite for the survival and the dendritic differentiation of Purkinje cells.  相似文献   

19.
When sphingomyelin is digested by sphingomyelinase in the plasma membrane of rat astrocytes, productions of sphingomyelin, diacylglycerol, and phosphatidylcholine are stimulated. D609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed these effects. Similarly, when apolipoprotein A-I removed cellular cholesterol, phosphatidylcholine, and sphingomyelin to generate high density lipoprotein, cholesterol synthesis from acetate subsequently increased, and sphingomyelin synthesis from acetate and serine also increased. D609 inhibited these effects again. D609 also inhibited the cholesterol removal by apoA-I not only from the astrocytes but also from BALB/3T3 and RAW264 cells. D609 decreased cholesterol synthesis, although D609 did not directly inhibit hydroxymethylglutaryl-CoA reductase. ApoA-I-stimulated translocation of newly synthesized cholesterol to cytosol was also decreased by D609. A diacylglycerol analog increased the apoA-I-mediated cholesterol release, whereas ceramide did not influence it. We concluded that removal of cellular sphingomyelin by apolipoproteins is replenished by transfer of phosphorylcholine from phosphatidylcholine to ceramide, and this reaction may limit the removal of cholesterol by apoA-I. This reaction also produces diacylglycerol that potentially triggers subsequent cellular signal cascades and regulates intracellular cholesterol trafficking.  相似文献   

20.
Rabbits were fed for 10-12 weeks on a normal pellet diet or on the same diet containing 1% cholesterol and 6% peanut oil. The animals were killed and the aortas divided into three layers which were homogenized and extracted. The extracts and the insoluble residues were assayed for transglutaminase activity and tissue transglutaminase antigen. When compared with normal aortas, the inner and middle layers of aortas with atherosclerotic lesions from cholesterol-fed rabbits showed higher transglutaminase activities in the buffer-soluble fraction without a corresponding increase in antigen. The buffer extracts showed two peaks (I and II) of activity and antigen on DE 52 chromatography; peak I was also found, together with lipid, in Triton X-100 extracts of the buffer-insoluble residue. The Triton X-100 insoluble fraction showed higher concentrations of both activity and antigen in the inner and middle layers of atherosclerotic aortas than in normal aortas, but the activity per nanogram of antigen was lower than in the buffer-soluble fraction. The activity in this insoluble residue was largely extracted, together with an inhibitor, by an NaCl-sucrose-dithiothreitol-Triton X-100 solution. DE 52 chromatography of this extract showed a third peak of activity and antigen (peak III) and an inhibitor peak that was distinct from the activity peaks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号