首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Significant efforts have been devoted in the last decade to improving molecular docking techniques to predict both accurate binding poses and ranking affinities. Some shortcomings in the field are the limited number of standard methods for measuring docking success and the availability of widely accepted standard data sets for use as benchmarks in comparing different docking algorithms throughout the field. In order to address these issues, we have created a Cross‐Docking Benchmark server. The server is a versatile cross‐docking data set containing 4,399 protein‐ligand complexes across 95 protein targets intended to serve as benchmark set and gold standard for state‐of‐the‐art pose and ranking prediction in easy, medium, hard, or very hard docking targets. The benchmark along with a customizable cross‐docking data set generation tool is available at http://disco.csb.pitt.edu . We further demonstrate the potential uses of the server in questions outside of basic benchmarking such as the selection of the ideal docking reference structure.  相似文献   

2.
Ruvinsky AM  Kozintsev AV 《Proteins》2006,62(1):202-208
We present two novel methods to predict native protein-ligand binding positions. Both methods identify the native binding position as the most probable position corresponding to a maximum of a probability distribution function (PDF) of possible binding positions in a protein active site. Possible binding positions are the origins of clusters composed, on the basis of root-mean square deviations (RMSD), from the multiple ligand positions determined by a docking algorithm. The difference between the methods lies in the ways the PDF is derived. To validate the suggested methods, we compare the averaged RMSD of the predicted ligand docked positions relative to the experimentally determined positions for a set of 135 PDB protein-ligand complexes. We demonstrate that the suggested methods improve docking accuracy by as much as 21-24% in comparison with a method that simply identifies the binding position as the energy top-scored ligand position.  相似文献   

3.
We present a large test set of protein-ligand complexes for the purpose of validating algorithms that rely on the prediction of protein-ligand interactions. The set consists of 305 complexes with protonation states assigned by manual inspection. The following checks have been carried out to identify unsuitable entries in this set: (1) assessing the involvement of crystallographically related protein units in ligand binding; (2) identification of bad clashes between protein side chains and ligand; and (3) assessment of structural errors, and/or inconsistency of ligand placement with crystal structure electron density. In addition, the set has been pruned to assure diversity in terms of protein-ligand structures, and subsets are supplied for different protein-structure resolution ranges. A classification of the set by protein type is available. As an illustration, validation results are shown for GOLD and SuperStar. GOLD is a program that performs flexible protein-ligand docking, and SuperStar is used for the prediction of favorable interaction sites in proteins. The new CCDC/Astex test set is freely available to the scientific community (http://www.ccdc.cam.ac.uk).  相似文献   

4.
Even if the structure of a receptor has been determined experimentally, it may not be a conformation to which a ligand would bind when induced fit effects are significant. Molecular docking using such a receptor structure may thus fail to recognize a ligand to which the receptor can bind with reasonable affinity. Here, we examine one way to alleviate this problem by using an ensemble of receptor conformations generated from a molecular dynamics simulation for molecular docking. Two molecular dynamics simulations were conducted to generate snapshots for protein kinase A: one with the ligand bound, the other without. The ligand, balanol, was then docked to conformations of the receptors presented by these trajectories. The Lamarckian genetic algorithm in Autodock [Goodsell et al. J Mol Recognit 1996;9(1):1-5; Morris et al. J Comput Chem 1998;19(14):1639-1662] was used in the docking. Three ligand models were used: rigid, flexible, and flexible with torsional potentials. When the snapshots were taken from the molecular dynamics simulation of the protein-ligand complex, the correct docking structure could be recovered easily by the docking algorithm in all cases. This was an easier case for challenging the docking algorithm because, by using the structure of the protein in a protein-ligand complex, one essentially assumed that the protein already had a pocket to which the ligand can fit well. However, when the snapshots were taken from the ligand-free protein simulation, which is more useful for a practical application when the structure of the protein-ligand complex is not known, several clusters of structures were found. Of the 10 docking runs for each snapshot, at least one structure was close to the correctly docked structure when the flexible-ligand models were used. We found that a useful way to identify the correctly docked structure was to locate the structure that appeared most frequently as the lowest energy structure in the docking experiments to different snapshots.  相似文献   

5.
目的 分子对接在预测分子之间的结合模式和亲和力方面起着至关重要的作用,是计算结构生物学和计算机辅助药物设计研究的重要方法。本研究团队近期开发了一款基于模板的新型对接方法FitDock,当存在近似的蛋白质配体模板时,它在准确性和速度方面都超过了业界常用的分子对接方法。为了增强FitDock方法的可用性,使其在分子模拟领域得到更广泛的应用,很有必要发展图像化的软件工具。方法 基于Python图像化编程,本文开发了FitDockApp,这是分子可视化软件PyMOL的插件软件。结果 FitDockApp能够通过操作窗口界面,实现基于模板的分子对接和配体结构比对,实时显示预测三维结构,并提供将对接文件上传到实验室服务器获取最优模板的便利。此外,FitDockApp还具备批量对接功能。结论 FitDockApp通过用户友好的界面简化了对接过程,并提供丰富的功能,帮助研究人员获得精确的对接结果。FitDockApp是一款免费软件,兼容Windows和Linux系统,可在http://cao.labshare.cn/fitdock/下载。  相似文献   

6.
Fueled by advances in molecular structure determination, tools for structure-based drug design are proliferating rapidly. Lead discovery through searching of ligand databases with molecular docking techniques represents an attractive alternative to high-throughput random screening. The size of commercial databases imposes severe computational constraints on molecular docking, compromising the level of calculational detail permitted for each putative ligand. We describe alternative philosophies for docking which effectively address this challenge. With respect to the dynamic aspects of molecular recognition, these strategies lie along a spectrum of models bounded by the Lock-and-Key and Induced-Fit theories for ligand binding. We explore the potential of a rigid model in exploiting species specificity and of a tolerant model in predicting absolute ligand binding affinity. Current molecular docking methods are limited primarily by their ability to rank docked complexes; we therefore place particular emphasis on this aspect of the problem throughout our validation of docking strategies.  相似文献   

7.
Palmer DS  Jensen F 《Proteins》2011,79(10):2778-2793
We report the development of a method to improve the sampling of protein conformational space in molecular simulations. It is shown that a principal component analysis of energy-weighted normal modes in Cartesian coordinates can be used to extract vectors suitable for describing the dynamics of protein substructures. The method can operate with either atomistic or user-defined coarse-grained models of protein structure. An implicit reverse coarse-graining allows the dynamics of all-atoms to be recovered when a coarse-grained model is used. For an external test set of four proteins, it is shown that the new method is more successful than normal mode analysis in describing the large-scale conformational changes observed on ligand binding. The method has potential applications in protein-ligand and protein-protein docking and in biasing molecular dynamics simulations.  相似文献   

8.
Modeling protein flexibility constitutes a major challenge in accurate prediction of protein-ligand and protein-protein interactions in docking simulations. The lack of a reliable method for predicting the conformational changes relevant to substrate binding prevents the productive application of computational docking to proteins that undergo large structural rearrangements. Here, we examine how coarse-grained normal mode analysis has been advantageously applied to modeling protein flexibility associated with ligand binding. First, we highlight recent studies that have shown that there is a close agreement between the large-scale collective motions of proteins predicted by elastic network models and the structural changes experimentally observed upon ligand binding. Then, we discuss studies that have exploited the predicted soft modes in docking simulations. Two general strategies are noted: pregeneration of conformational ensembles that are then utilized as input for standard fixed-backbone docking and protein structure deformation along normal modes concurrent to docking. These studies show that the structural changes apparently "induced" upon ligand binding occur selectively along the soft modes accessible to the protein prior to ligand binding. They further suggest that proteins offer suitable means of accommodating/facilitating the recognition and binding of their ligand, presumably acquired by evolutionary selection of the suitable three-dimensional structure.  相似文献   

9.
Prioritization of compounds using inverse docking approach is limited owing to potential drawbacks in its scoring functions. Classically, molecules ranked by best or lowest binding energies and clustering methods have been considered as probable hits. Mining probable hits from an inverse docking approach is very complicated given the closely related protein targets and the chemically similar ligand data set. To overcome this problem, we present here a computational approach using receptor‐centric and ligand‐centric methods to infer the reliability of the inverse docking approach and to recognize probable hits. This knowledge‐driven approach takes advantage of experimentally identified inhibitors against a particular protein target of interest to delineate shape and molecular field properties and use a multilayer perceptron model to predict the biological activity of the test molecules. The approach was validated using flavone derivatives possessing inhibitory activities against principal antimalarial molecular targets of fatty acid biosynthetic pathway, FabG, FabI and FabZ, respectively. We propose that probable hits can be retrieved by comparing the rank list of docking, quantitative‐structure activity relationship and multilayer perceptron models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
GEMDOCK: a generic evolutionary method for molecular docking   总被引:1,自引:0,他引:1  
Yang JM  Chen CC 《Proteins》2004,55(2):288-304
We have developed an evolutionary approach for flexible ligand docking. This approval, GEMDOCK, uses a Generic Evolutionary Method for molecular DOCKing and an empirical scoring function. The former combines both discrete and continuous global search strategies with local search strategies to speed up convergence, whereas the latter results in rapid recognition of potential ligands. GEMDOCK was tested on a diverse data set of 100 protein-ligand complexes from the Protein Data Bank. In 79% of these complexes, the docked lowest energy ligand structures had root-mean-square derivations (RMSDs) below 2.0 A with respect to the corresponding crystal structures. The success rate increased to 85% if the structure water molecules were retained. We evaluated GEMDOCK on two cross-docking experiments in which each ligand of a protein ensemble was docked into each protein of the ensemble. Seventy-six percent of the docked structures had RMSDs below 2.0 A when the ligands were docked into foreign structures. We analyzed and validated GEMDOCK with respect to various search spaces and scoring functions, and found that if the scoring function was perfect, then the predicted accuracy was also essentially perfect. This study suggests that GEMDOCK is a useful tool for molecular recognition and may be used to systematically evaluate and thus improve scoring functions.  相似文献   

11.
Ghersi D  Sanchez R 《Proteins》2009,74(2):417-424
The use of predicted binding sites (binding sites calculated from the protein structure alone) is evaluated here as a tool to focus the docking of small molecule ligands into protein structures, simulating cases where the real binding sites are unknown. The resulting approach consists of a few independent docking runs carried out on small boxes, centered on the predicted binding sites, as opposed to one larger blind docking run that covers the complete protein structure. The focused and blind approaches were compared using a set of 77 known protein-ligand complexes and 19 ligand-free structures. The focused approach is shown to: (1) identify the correct binding site more frequently than blind docking; (2) produce more accurate docking poses for the ligand; (3) require less computational time. Additionally, the results show that very few real binding sites are missed in spite of focusing on only three predicted binding sites per target protein. Overall the results indicate that, by improving the sampling in regions that are likely to correspond to binding sites, the focused docking approach increases accuracy and efficiency of protein ligand docking for those cases where the ligand-binding site is unknown. This is especially relevant in applications such as reverse virtual screening and structure-based functional annotation of proteins.  相似文献   

12.
Discovering small molecules that interact with protein targets will be a key part of future drug discovery efforts. Molecular docking of drug-like molecules is likely to be valuable in this field; however, the great number of such molecules makes the potential size of this task enormous. In this paper, a method to screen small molecular databases using cloud computing is proposed. This method is called the hierarchical method for molecular docking and can be completed in a relatively short period of time. In this method, the optimization of molecular docking is divided into two subproblems based on the different effects on the protein–ligand interaction energy. An adaptive genetic algorithm is developed to solve the optimization problem and a new docking program (FlexGAsDock) based on the hierarchical docking method has been developed. The implementation of docking on a cloud computing platform is then discussed. The docking results show that this method can be conveniently used for the efficient molecular design of drugs.  相似文献   

13.
Protein‐protein interactions are abundant in the cell but to date structural data for a large number of complexes is lacking. Computational docking methods can complement experiments by providing structural models of complexes based on structures of the individual partners. A major caveat for docking success is accounting for protein flexibility. Especially, interface residues undergo significant conformational changes upon binding. This limits the performance of docking methods that keep partner structures rigid or allow limited flexibility. A new docking refinement approach, iATTRACT, has been developed which combines simultaneous full interface flexibility and rigid body optimizations during docking energy minimization. It employs an atomistic molecular mechanics force field for intermolecular interface interactions and a structure‐based force field for intramolecular contributions. The approach was systematically evaluated on a large protein‐protein docking benchmark, starting from an enriched decoy set of rigidly docked protein–protein complexes deviating by up to 15 Å from the native structure at the interface. Large improvements in sampling and slight but significant improvements in scoring/discrimination of near native docking solutions were observed. Complexes with initial deviations at the interface of up to 5.5 Å were refined to significantly better agreement with the native structure. Improvements in the fraction of native contacts were especially favorable, yielding increases of up to 70%. Proteins 2015; 83:248–258. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Huang SY  Zou X 《Proteins》2007,66(2):399-421
One approach to incorporate protein flexibility in molecular docking is the use of an ensemble consisting of multiple protein structures. Sequentially docking each ligand into a large number of protein structures is computationally too expensive to allow large-scale database screening. It is challenging to achieve a good balance between docking accuracy and computational efficiency. In this work, we have developed a fast, novel docking algorithm utilizing multiple protein structures, referred to as ensemble docking, to account for protein structural variations. The algorithm can simultaneously dock a ligand into an ensemble of protein structures and automatically select an optimal protein structure that best fits the ligand by optimizing both ligand coordinates and the conformational variable m, where m represents the m-th structure in the protein ensemble. The docking algorithm was validated on 10 protein ensembles containing 105 crystal structures and 87 ligands in terms of binding mode and energy score predictions. A success rate of 93% was obtained with the criterion of root-mean-square deviation <2.5 A if the top five orientations for each ligand were considered, comparable to that of sequential docking in which scores for individual docking are merged into one list by re-ranking, and significantly better than that of single rigid-receptor docking (75% on average). Similar trends were also observed in binding score predictions and enrichment tests of virtual database screening. The ensemble docking algorithm is computationally efficient, with a computational time comparable to that for docking a ligand into a single protein structure. In contrast, the computational time for the sequential docking method increases linearly with the number of protein structures in the ensemble. The algorithm was further evaluated using a more realistic ensemble in which the corresponding bound protein structures of inhibitors were excluded. The results show that ensemble docking successfully predicts the binding modes of the inhibitors, and discriminates the inhibitors from a set of noninhibitors with similar chemical properties. Although multiple experimental structures were used in the present work, our algorithm can be easily applied to multiple protein conformations generated by computational methods, and helps improve the efficiency of other existing multiple protein structure(MPS)-based methods to accommodate protein flexibility.  相似文献   

15.
Current homology-modelling methods do not consider small molecules in their automated processes. Therefore, the development of a reliable tool for protein-ligand homology modelling is an important next step in generating plausible models for molecular interactions. Two automated protein-ligand homology-modelling strategies, requiring no expert knowledge from the user, are investigated here. Both employ the “induced fit” concept with flexibility in side chains and ligand. The most successful strategy superimposes the new ligand over the original ligand before homology modelling, allowing the new ligand to be taken into consideration during protein modelling (rather than after), facilitating conformational change in the local backbone if necessary. We show that this approach results in successful modelling of the ligand and key binding-site residues of angiotensin-converting enzyme 2 (ACE2) from its homologue ACE, which is not possible via conventional homology modelling or by homology modelling followed by docking. Several other difficult target complexes are also successfully modelled, reproducing native protein-ligand contacts with significantly different biological substrates and different binding-site conformations. These include the modelling of Cdk5 (cyclin-dependent kinase 5) from Cdk2, thymidine phosphorylase from a bacterial homologue, and dihydrofolate reductase from a recombinant variant with a markedly different inhibitor. In terms of average modelling quality across 82 targets, the ligand RMSD with respect to the experimental structure is 1.4 Å (and 2.0 Å for the protein binding site) for “easy” cases and 2.9 Å for the ligand (and 2.7 Å for the protein binding site) in “hard” cases. This demonstrates the importance of selecting an optimal template. Ligand-modelling accuracy is strongly dependent on target-template ligand structural similarity, rather than target-template sequence identity. However, protein-modelling accuracy is dependent on both. Our automated protein-ligand homology-modelling strategy generates a higher degree of accuracy than homology modelling followed by docking, generating an average ligand RMSD that is 1-2 Å better than docking with homology models.  相似文献   

16.
Grosdidier A  Zoete V  Michielin O 《Proteins》2007,67(4):1010-1025
In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.  相似文献   

17.
A novel dynamical protocol for finding the low-energy conformations of a protein-ligand complex is described. The energy functions examined consist of an empirical force field with four different dielectric screening models; the generalized Born/surface area model also is examined. Application of the method to three complexes of known crystal structure provides insights into the energy functions used for selecting low-energy docked conformations and into the structure of the binding-energy surface. Evidence is presented that the local energy minima of a ligand in a binding site are arranged in a hierarchical fashion. This observation motivates the construction of a hierarchical docking algorithm that substantially enriches the population of ligand conformations close to the crystal conformation. The algorithm is also adapted to permit docking into a flexible binding site and preliminary tests of this method are presented. Proteins 33:475–495, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Computational docking methods are valuable tools aimed to simplify the costly process of drug development and improvement. Most current approaches assume a rigid receptor structure to allow virtual screening of large numbers of possible ligands and putative binding sites on a receptor molecule. However, inclusion of receptor flexibility can be of critical importance since binding of a ligand can lead to changes in the receptor protein conformation that are sterically necessary to accommodate a ligand. Recent approaches to efficiently account for receptor flexibility during docking simulations are reviewed. In particular, accounting efficiently for global conformational changes of the protein backbone during docking is a still challenging unsolved problem. An approximate method has recently been suggested that is based on relaxing the receptor conformation during docking in pre-calculated soft collective degrees of freedom (M. Zacharias, Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP, Proteins: Struct., Funct., Genet. 54 (2004) 759-767). Test applications on protein-protein docking and on docking the inhibitor staurosporine to the apo-form of cAMP-dependent protein kinase A catalytic domain indicate significant improvement of docking results compared to rigid docking at a very modest computational demand. Accounting for receptor conformational changes in pre-calculated global degrees of freedom might offer a promising route to improve systematic docking screening simulations.  相似文献   

19.
Automated docking of ligands to antibodies: methods and applications   总被引:2,自引:0,他引:2  
Many approaches to studying protein-ligand interactions by computational docking are currently available. Given the structures of a protein and a ligand, the ultimate goal of all docking methods is to predict the structure of the resulting complex. This requires a suitable representation of molecular structures and properties, search algorithms to efficiently scan the configuration space for favorable interaction geometries, and accurate scoring functions to evaluate and rank the generated orientations. For many of the available methods, tests on experimentally known antibody-antigen or antibody-hapten complexes have appeared in the literature. In addition, some of them have been used in predictive studies on antibody-ligand interactions to provide structural insights where adequate experimental information is missing. The AutoDock program is presented as example of a method for flexibly docking ligands to antibodies. Applying parameters of the second-generation AMBER force field, three antibody-hapten complexes (AN02, DB3, NC6.8) are used as new test cases to analyze the ability of the method to reproduce experimental findings. The X-ray structures could be reconstituted and the corresponding solutions were ranked with best energy score in all cases. Docking to the free instead of the complexed NC6.8 structure indicated the limits of the rigid protein treatment, although fairly good guesses about the location of the binding site and the contact residues could still be obtained if conformational flexibility was allowed at least in the ligand.  相似文献   

20.
Molecular docking has been used to compare and contrast the binding modes of oestradiol with the wild-type and some disease-associated mutant forms of the human CYP1b1 protein. The receptor structures used for docking were derived from molecular dynamics simulations of homology-modelled structures. Earlier studies involving molecular dynamics and principal component analysis indicated that mutations could have a disruptive effect on function, by destabilizing the native properties of the functionally important regions, especially those of the haem-binding and substrate-binding regions, which constitute the site of catalytic activity of the enzyme. In order to gain more insights into the possible differences in substrate-binding and catalysis between the wild-type and mutant proteins, molecular docking studies were carried out. Mutants showed altered protein-ligand interactions compared with the wild-type as a consequence of changes in the geometry of the substrate-binding region and in the position of haem relative to the active site. An important difference in ligand-protein interactions between the wild-type and mutants is the presence of stacking interaction with phenyl residues in the wild-type, which is either completely absent or considerably weaker in mutants. The present study revealed essential differences in the interactions between ligand and protein in wild-type and disease mutants, and helped in understanding the deleterious nature of disease mutations at the level of molecular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号