首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of the gastrointestinal (GI) tract to high doses of radiation can lead to lethality from the GI syndrome. Although the molecular mechanism regulating the GI syndrome remains to be fully defined, we have recently demonstrated that p53 within the GI epithelial cells controls the radiation-induced GI syndrome. Mice lacking p53 in the GI epithelium were sensitized to the GI syndrome, while transgenic mice with one additional copy of p53 called "Super p53" mice were protected from the GI syndrome. Here, we crossed Super p53 mice to p21?/? mice that lack the cyclin-dependent kinase inhibitor p21. Super p53; p21?/? mice were sensitized to the GI syndrome compared to Super p53 mice that retain one p21 allele. In addition, mice lacking p21 were not protected from the GI syndrome with one extra copy of p53. These results suggest that p21 protects Super p53 mice from the GI syndrome.  相似文献   

2.
p53 regulates a key pathway which protects normal tissues from tumor development that may result from diverse forms of stress. In the absence of stress, growth suppressive and proapoptotic activity of p53 is inhibited by MDM2 which binds p53 and negatively regulates its activity and stability. MDM2 antagonists could activate p53 and may offer a novel therapeutic approach to cancer. Recently, we identified the first potent and selective low molecular weight inhibitors of MDM2-p53 binding, the Nutlins. These molecules activate the p53 pathway and suppress tumor growth in vitro and in vivo. They represent valuable new tools for studying the p53 pathway and its defects in cancer. Nutlins induce p53-dependent apoptosis in human cancer cells but appear cytostatic to proliferating normal cells. Their potent activity against osteosarcoma xenografts suggests that MDM2 antagonists may have clinical utility in the treatment of tumors with wild-type p53.  相似文献   

3.
4.
5.
MdmX protects p53 from Mdm2-mediated degradation   总被引:10,自引:0,他引:10       下载免费PDF全文
The p53 tumor suppressor protein is stabilized in response to cellular stress, resulting in activation of genes responsible for either cell cycle arrest or apoptosis. The cellular pathway for releasing normal cells from p53-dependent cell cycle arrest involves the Mdm2 protein. Recently, a p53-binding protein with homology to Mdm2 was identified and called MdmX. Like Mdm2, MdmX is able to bind p53 and inhibit p53 transactivation; however, the ability of MdmX to degrade p53 has yet to be examined. We report here that MdmX is capable of associating with p53 yet is unable to facilitate nuclear export or induce p53 degradation. In addition, expression of MdmX can reverse Mdm2-targeted degradation of p53 while maintaining suppression of p53 transactivation. Using a series of MdmX deletions, we have determined that there are two distinct domains of the MdmX protein that can stabilize p53 in the presence of Mdm2. One domain requires MdmX interaction with p53 and results in the retention of both proteins within the nucleus and repression of p53 transactivation. The second domain involves the MdmX ring finger and results in stabilization of p53 and an increase in p53 transactivation. The potential basis for stabilization and increased p53 transactivation by the MdmX ring finger domain is discussed. Based on these observations, we propose that the MdmX protein may function to maintain a nuclear pool of p53 protein in undamaged cells.  相似文献   

6.
7.
JunD protects cells from p53-dependent senescence and apoptosis   总被引:11,自引:0,他引:11  
  相似文献   

8.
MOTIVATION: Protein-protein interactions (PPIs) are a promising, but challenging target for pharmaceutical intervention. One approach for addressing these difficult targets is the rational design of small-molecule inhibitors that mimic the chemical and physical properties of small clusters of key residues at the protein-protein interface. The identification of appropriate clusters of interface residues provides starting points for inhibitor design and supports an overall assessment of the susceptibility of PPIs to small-molecule inhibition. RESULTS: We extract Small-Molecule Inhibitor Starting Points (SMISPs) from protein-ligand and protein-protein complexes in the Protein Data Bank (PDB). These SMISPs are used to train two distinct classifiers, a support vector machine and an easy to interpret exhaustive rule classifier. Both classifiers achieve better than 70% leave-one-complex-out cross-validation accuracy and correctly predict SMISPs of known PPI inhibitors not in the training set. A PDB-wide analysis suggests that nearly half of all PPIs may be susceptible to small-molecule inhibition.  相似文献   

9.
We analysed by analytical ultracentrifugation and fluorescence anisotropy the binding of p53 truncation mutants to sequence-specific DNA. The synthetic 30 base-pair DNA oligomers contained the 20 base-pair recognition elements for p53, consisting of four sites of five base-pairs per p53 monomer. We found that the binding at low ionic strengths was obscured by artifacts of non-specific binding and so made measurements at higher ionic strengths. Analytical ultracentrifugation of the construct p53CT (residues 94-360, containing the DNA-binding core and tetramerization domains) gave a dissociation constant of approximately 3 microM for its dimer-tetramer equilibrium, similar to that of full-length protein. Analytical ultracentrifugation and fluorescence anisotropy showed that p53CT formed a complex with the DNA constructs with 2:1 stoichiometry (dimer:DNA). The binding of p53CT (1-100 nm range) to DNA was highly cooperative, with a Hill coefficient of 1.8 (dimer:DNA). The dimeric L344A mutant of p53CT has impaired tetramerization. It bound to full-length DNA p53 recognition sequence, but with sixfold less affinity than wild-type protein. It did not form a detectable complex with a 30-mer DNA construct containing two specific five base-pair sites and two random sites, emphasizing the high co-operativity of the binding. The fundamental active unit of p53 appears to be the tetramer, which is induced by DNA binding, although it is a dimer at low concentrations.  相似文献   

10.
PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy.   总被引:31,自引:0,他引:31  
The PTEN tumor suppressor protein inhibits phosphatidylinositol 3-kinase (PI3K)/Akt signaling that promotes translocation of Mdm2 into the nucleus. When restricted to the cytoplasm, Mdm2 is degraded. The ability of PTEN to inhibit the nuclear entry of Mdm2 increases the cellular content and transactivation of the p53 tumor suppressor protein. Retroviral transduction of PTEN into U87MG (PTEN null) glioblastoma cells increases p53 activity and expression of p53 target genes and induces cell cycle arrest. U87MG/PTEN glioblastoma cells are more sensitive than U87MG/PTEN null cells to death induced by etoposide, a chemotherapeutic agent that induces DNA damage. Previously, tumor suppressor proteins have been supposed to act individually to suppress cancers. Our results establish a direct connection between the activities of two major tumor suppressors and show that they act together to respond to stresses and malignancies. PTEN protects p53 from survival signals, permitting p53 to function as a guardian of the genome. By virtue of its capacity to protect p53, PTEN can sensitize tumor cells to chemotherapy that relies on p53 activity. p53 induces PTEN gene expression, and here it is shown that PTEN protects p53, indicating that a positive feedback loop may amplify the cellular response to stress, damage, and cancer.  相似文献   

11.
p53 is a conformationally flexible sequence-specific DNA binding protein mutated in many human tumors. To understand why the mutant p53 proteins associated with human tumors fail to bind DNA, we mapped the DNA binding domain of wild-type p53 and examined its regulation by changes in the protein conformation. Using site-directed mutagenesis, residues 90-286 of mouse p53 were shown to form the sequence-specific DNA binding domain. Two highly conserved regions within this domain, regions IV and V, were implicated in contacting DNA. Wild-type p53 bound DNA as a tetramer, each subunit recognizing five nucleotides of the 20 nucleotide-long DNA site. Conformational shifts of the oligomerization domain propagated to the tetrameric DNA binding domain, regulating DNA binding activity, but did not affect the subunit stoichiometry of wild-type p53 oligomers. Interestingly, conformational shifts could also be propagated within certain p53 mutants, rescuing DNA binding. One of these mutants was the mouse equivalent of human histidine 273, which is frequently associated with human tumors.  相似文献   

12.
While the transactivation function of the tumor suppressor p53 is well understood, less is known about the transrepression functions of this protein. We have previously shown that p53 interacts with the corepressor protein mSin3a (hereafter designated Sin3) in vivo and that this interaction is critical for the ability of p53 to repress gene expression. In the present study, we demonstrate that expression of Sin3 results in posttranslational stabilization of both exogenous and endogenous p53, due to an inhibition of proteasome-mediated degradation of this protein. Stabilization of p53 by Sin3 requires the Sin3-binding domain, determined here to map to the proline-rich region of p53, from amino acids 61 to 75. The correlation between Sin3 binding and stabilization supports the hypothesis that this domain of p53 may normally be subject to a destabilizing influence. The finding that a synthetic mutant of p53 lacking the Sin3-binding domain has an increased half-life in cells, compared to wild-type p53, supports this premise. Interestingly, unlike retinoblastoma tumor suppressor protein, MDMX, and p14(ARF), Sin3 stabilizes p53 in an MDM2-independent manner. The ability of Sin3 to stabilize p53 is consistent with the model whereby these two proteins must exist on a promoter for extended periods, in order for repression to be an effective mechanism of gene regulation. This model is consistent with our data indicating that, unlike the p300-p53 complex, the p53-Sin3 complex is immunologically detectable for prolonged periods following exposure of cells to agents of DNA damage.  相似文献   

13.
Ionizing radiation (IR) is a well-known carcinogen, however the mechanism of radiation induced thymic lymphoma is not well known. Moreover, an easy and effective method to protect mice from radiation induced thymic lymphoma is still unknown. Hydrogen, or H(2), is seldom regarded as an important agent in medical usage, especially as a therapeutic gas. Here in this study, we found that H(2) protects mice from radiation induced thymic lymphoma in BALB/c mice.  相似文献   

14.
15.
16.
Statins are cholesterol-lowing drugs with pleiotropic effects including cytotoxicity to cancer cells. In this study, we investigated the signaling pathways leading to apoptosis by simvastatin. Simvastatin induced cardinal features of apoptosis including increased DNA fragmentation, disruption of mitochondrial membrane potential (MMP), and increased caspase-3 activity by depleting isoprenoids in MethA fibrosarcoma cells. Interestingly, the simvastatin-induced apoptosis was accompanied by p53 stabilization involving Mdm2 degradation. The apoptosis was ameliorated in p53 knockdown clones of MethA cells as well as p53−/− HCT116 cells. The stabilized p53 protein translocated to mitochondria with Bax, and cytochrome c was released into cytosol. Moreover, knockdown or deficiency of p53 expression reduced both Bax translocation to mitochondria and MMP disruption in simvastatin-induced apoptosis. Taken together, these all indicate that stabilization and translocation of p53 to mitochondria is involved in Bax translocation to mitochondria in simvastatin-induced apoptosis.  相似文献   

17.
18.
The mechanisms underlying oligodendrocyte (OLG) loss and the precise roles played by OLG death in human demyelinating diseases such as multiple sclerosis (MS), and in the rodent model of MS, experimental autoimmune encephalomyelitis (EAE), remain to be elucidated. To clarify the involvement of OLG death in EAE, we have generated transgenic mice that express the baculovirus anti-apoptotic protein p35 in OLGs through the Cre-loxP system. OLGs from cre/p35 transgenic mice were resistant to tumor necrosis factor-alpha-, anti-Fas antibody- and interferon-gamma-induced cell death. cre/p35 transgenic mice were resistant to EAE induction by immunization with the myelin oligodendrocyte glycoprotein. The numbers of infiltrating T cells and macrophages/microglia in the EAE lesions were significantly reduced, as were the numbers of apoptotic OLGs expressing the activated form of caspase-3. Thus, inhibition of apoptosis in OLGs by p35 expression alleviated the severity of the neurological manifestations observed in autoimmune demyelinating diseases.  相似文献   

19.
20.
DNA放射损伤与p53   总被引:1,自引:0,他引:1  
Qian X  Zhu YB 《生理科学进展》2005,36(4):379-381
电离辐射等多种因素可以引起DNA损伤,表现为碱基改变、DNA双链断裂(DNA double-strand breaks,DSBs)和DNA单链断裂(Single-strand breaks,SSBs)等多种形式。DNA损伤后,细胞发生应答,即引起细胞周期阻滞和/或细胞程序性死亡,以减少损伤引起的染色体畸变和基因组不稳定。在细胞应答过程中,p53蛋白水平和活性均发生变化,介导细胞周期阻滞、程序性死亡,并直接参与DNA损伤修复过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号