首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work presents here a new fundamental strategy for bio-converting Kraft lignin (KL) into useful products. Cupriavidus basilensis B-8 (here after B-8) was able to use KL as the sole carbon source. Fully 41.5% of lignin, 37.7% of total carbon (TC) and 43.0% of color were removed after 7 days of incubation. At the same time, lignin was depolymerized into small fragments, which was confirmed by scanning electron microscopy (SEM) and gel permeation chromatography (GPC). Bacterial biomass accumulated to 735.6 mg/L at the initial KL concentration of 5 g L−1, and the corresponding volumetric productivity of polyhydroxyalkanoate (PHA) was 128 mg/L. PHA productivity was significantly improved through fed batch fermentation and reached to 319.4 mg/L. GC–MS analysis showed that PHA polymer was composed of three basic monomers: 98.3 mol% of (S)-3-hydroxy-butanoic acid (S3HB), 1.3 mol% of ®-3-hydroxybutyric acid (R3HB) and 0.4 mol% of 3-hydroxy-butanoic acid (3HB).  相似文献   

2.
Kraft lignin (KL) is the major pollutant in black liquor. The bacterial strain Pandoraea sp. B-6 was able to degrade KL without any co-substrate under high alkaline conditions. At least 38.2 % of chemical oxygen demand and 41.6 % of color were removed in 7 days at concentrations from 1 to 6 g L?1. The optimum pH for KL degradation was 10 and the optimum temperature was 30 °C. The greatest activities of 2,249.2 U L?1 for manganese peroxidase and 1,120.6 U L?1 for laccase were detected on the third and fifth day at pH 10, respectively. Many small molecules, such as cinnamic acid, ferulic acid, 2-hydroxy benzyl alcohol, and vanillyl methyl ketone, were formed during the period of KL degradation based on GC–MS analysis. These results indicate that this strain has great potential for biotreatment of black liquor.  相似文献   

3.

Background

Termites are highly effective at degrading lignocelluloses, and thus can be used as a model for studying plant cell-wall degradation in biological systems. However, the process of lignin deconstruction and/or degradation in termites is still not well understood.

Methods

We investigated the associated structural modification caused by termites in the lignin biomolecular assembly in softwood tissues crucial for cell-wall degradation. We conducted comparative studies on the termite-digested (i.e. termite feces) and native (control) softwood tissues with the aid of advanced analytical techniques: 13C crosspolarization magic angle spinning and nuclear magnetic resonance (CP-MAS-NMR) spectroscopy, flash pyrolysis with gas chromatography mass spectrometry (Py-GC/MS), and Py-GC-MS in the presence of tetramethylammonium hydroxide (Py-TMAH)-GC/MS.

Results

The 13C CP/MAS NMR spectroscopic analysis revealed an increased level of guaiacyl-derived (G unit) polymeric framework in the termite-digested softwood (feces), while providing specific evidence of cellulose degradation. The Py-GC/MS data were in agreement with the 13C CP/MAS NMR spectroscopic studies, thus indicating dehydroxylation and modification of selective intermonomer side-chain linkages in the lignin in the termite feces. Moreover, Py-TMAH-GC/MS analysis showed significant differences in the product distribution between control and termite feces. This strongly suggests that the structural modification in lignin could be associated with the formation of additional condensed interunit linkages.

Conclusion

Collectively, these data further establish: 1) that the major β-O-4' (β-aryl ether) was conserved, albeit with substructure degeneracy, and 2) that the nature of the resulting polymer in termite feces retained most of its original aromatic moieties (G unit-derived). Overall, these results provide insight into lignin-unlocking mechanisms for understanding plant cell-wall deconstruction, which could be useful in development of new enzymatic pretreatment processes mimicking the termite system for biochemical conversion of lignocellulosic biomass to fuels and chemicals.  相似文献   

4.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum l-AI were used for production of d-tagatose from d-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of d-galactose to d-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L?1 substrate and at 37.5 °C after 5 days. The d-tagatose production rate of 185 g L?1 day?1 was obtained at 300 g L?1 galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial d-tagatose production rate was 290 g L?1 day?1 under these conditions.  相似文献   

5.

Key message

The gene coding for F5H from Eucalyptus globulus was cloned and used to transform an f5h -mutant of Arabidopsis thaliana , which was complemented, thus verifying the identity of the cloned gene.

Abstract

Coniferaldehyde 5-hydroxylase (F5H; EC 1.14.13) is a cytochrome P450-dependent monooxygenase that catalyzes the 5-hydroxylation step required for the production of syringyl units in lignin biosynthesis. The Eucalyptus globulus enzyme was characterized in vitro, and results showed that the preferred substrates were coniferaldehyde and coniferyl alcohol. Complementation experiments demonstrated that both cDNA and genomic constructs derived from F5H from E. globulus under the control of the cinnamate 4-hydroxylase promoter from Arabidopsis thaliana, or a partial F5H promoter from E. globulus, can rescue the inability of the A. thaliana fah1-2 mutant to accumulate sinapate esters and syringyl lignin. E. globulus is a species widely used to obtain products that require lignin removal, and the results suggest that EglF5H is a good candidate for engineering efforts aimed at increasing the lignin syringyl unit content, either for kraft pulping or biofuel production.  相似文献   

6.

Aims

This work addresses the relevant effects that one single compound, used as model herbicide, provokes on the activity/survival of a suitable herbicide degrading model bacterium and on a plant that hosts this bacterium and its bacterial rhizospheric community.

Methods

The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on Acacia caven hosting the 2,4-D degrading bacterium Cupriavidus pinatubonensis JMP134, and its rhizospheric microbiota, were simultaneously addressed in plant soil microcosms, and followed by culture dependent and independent procedures, herbicide removal tests, bioprotection assays and use of encapsulated bacterial cells.

Results

The herbicide provokes deleterious effects on the plant, which are significantly diminished by the presence of the plant associated C. pinatubonensis, especially with encapsulated cells. This improvement correlated with increased 2,4-D degradation rates. The herbicide significantly changes the structure of the A. caven bacterial rhizospheric community; and it also diminishes the preference of C. pinatubonensis for the A. caven rhizosphere compared with the surrounding bulk soil.

Conclusions

The addition of an herbicide to soil triggers a complex, although more or less predictable, suite of effects on rhizobacterial communities, herbicide degrading bacteria and their plant hosts that should be taken into account in fundamental studies and design of bio(phyto)remediation procedures.  相似文献   

7.
8.
A kraft lignin-degrading bacterium (ITRC S 7 ) was isolated from sludge of pulp and paper mill and characterized as Aneurinibacillus aneurinilyticus by biochemical tests and 16SrRNA gene sequencing. The bacterium did not utilize kraft lignin (KL) as the sole source of carbon and energy. However, this strain reduced the color (58%) and lignin content (43%) from kraft lignin-mineral salt medium when supplemented with glucose at pH 7.6 and 30°C after 6 days. The degradation on addition of glucose in culture medium is clear evidence of co-metabolism of KL by A. aneurinilyticus. The analysis of lignin degradation products by GC-MS in ethyl acetate extract from an A. aneurinilyticus-inoculated sample revealed the formation of low molecular weight aromatic compounds such as guaiacol, acetoguaiacone, gallic acid and ferulic acid, indicating that the bacterium can oxidize of the sinapylic (G units) and coniferylic (S units) alcohol units which are the basic moieties that build the hardwood lignin structure. The low molecular weight aromatic compounds identified in extracts of the inoculated sample favors the idea of biochemical modification of the KL to a single aromatic unit.  相似文献   

9.

Background

Lignin is embedded in the plant cell wall matrix, and impedes the enzymatic saccharification of lignocellulosic feedstocks. To investigate whether enzymatic digestibility of cell wall materials can be improved by altering the relative abundance of the two major lignin monomers, guaiacyl (G) and syringyl (S) subunits, we compared the degradability of cell wall material from wild-type Arabidopsis thaliana with a mutant line and a genetically modified line, the lignins of which are enriched in G and S subunits, respectively.

Results

Arabidopsis tissue containing G- and S-rich lignins had the same saccharification performance as the wild type when subjected to enzyme hydrolysis without pretreatment. After a 24-hour incubation period, less than 30% of the total glucan was hydrolyzed. By contrast, when liquid hot water (LHW) pretreatment was included before enzyme hydrolysis, the S-lignin-rich tissue gave a much higher glucose yield than either the wild-type or G-lignin-rich tissue. Applying a hot-water washing step after the pretreatment did not lead to a further increase in final glucose yield, but the initial hydrolytic rate was doubled.

Conclusions

Our analyses using the model plant A. thaliana revealed that lignin composition affects the enzymatic digestibility of LHW pretreated plant material. Pretreatment is more effective in enhancing the saccharification of A. thaliana cell walls that contain S-rich lignin. Increasing lignin S monomer content through genetic engineering may be a promising approach to increase the efficiency and reduce the cost of biomass to biofuel conversion.  相似文献   

10.

Background

Currently the major barrier in biomass utilization is the lack of an effective pretreatment of plant cell wall so that the carbohydrates can subsequently be hydrolyzed into sugars for fermentation into fuel or chemical molecules. Termites are highly effective in degrading lignocellulosics and thus can be used as model biological systems for studying plant cell wall degradation.

Results

We discovered a combination of specific structural and compositional modification of the lignin framework and partial degradation of carbohydrates that occurs in softwood with physical chewing by the termite, Coptotermes formosanus, which are critical for efficient cell wall digestion. Comparative studies on the termite-chewed and native (control) softwood tissues at the same size were conducted with the aid of advanced analytical techniques such as pyrolysis gas chromatography mass spectrometry, attenuated total reflectance Fourier transform infrared spectroscopy and thermogravimetry. The results strongly suggest a significant increase in the softwood cellulose enzymatic digestibility after termite chewing, accompanied with utilization of holocellulosic counterparts and an increase in the hydrolysable capacity of lignin collectively. In other words, the termite mechanical chewing process combines with specific biological pretreatment on the lignin counterpart in the plant cell wall, resulting in increased enzymatic cellulose digestibility in vitro. The specific lignin unlocking mechanism at this chewing stage comprises mainly of the cleavage of specific bonds from the lignin network and the modification and redistribution of functional groups in the resulting chewed plant tissue, which better expose the carbohydrate within the plant cell wall. Moreover, cleavage of the bond between the holocellulosic network and lignin molecule during the chewing process results in much better exposure of the biomass carbohydrate.

Conclusion

Collectively, these data indicate the participation of lignin-related enzyme(s) or polypeptide(s) and/or esterase(s), along with involvement of cellulases and hemicellulases in the chewing process of C. formosanus, resulting in an efficient pretreatment of biomass through a combination of mechanical and enzymatic processes. This pretreatment could be mimicked for industrial biomass conversion.  相似文献   

11.

Background

The efficient depolymerization and utilization of lignin are one of the most important goals for the renewable use of lignocelluloses. The degradation and complete mineralization of lignin by bacteria represent a key step for carbon recycling in land ecosystems as well. However, many aspects of this process remain unclear, for example, the complex network of metabolic pathways involved in the degradation of lignin and the catabolic pathway of intermediate aromatic metabolites. To address these subjects, we characterized the deconstruction and mineralization of lignin with milled wood lignin (MWL, the most representative molecule of lignin in its native state) and alkali lignin (AL), and elucidated metabolic pathways of their intermediate metabolites by a bacterium named Comamonas serinivorans SP-35.

Results

The degradation rate of MWL reached 30.9%, and its particle size range was decreased from 6 to 30 µm to 2–4 µm—when cultured with C. serinivorans SP35 over 7 days. FTIR analysis showed that the C–C and C–O–C bonds between the phenyl propane structures of lignin were oxidized and cleaved and the side chain structure was modified. More than twenty intermediate aromatic metabolites were identified in the MWL and AL cultures based on GC–MS analysis. Through genome sequencing and annotation, and from GC–MS analysis, 93 genes encoding 33 enzymes and 5 regulatory factors that may be involved in lignin degradation were identified and more than nine metabolic pathways of lignin and its intermediates were predicted. Of particular note is that the metabolic pathway to form the powerful antioxidant 3,4-dihydroxyphenylglycol is described for the first time in bacteria.

Conclusion

Elucidation of the β-aryl ether cleavage pathway in the strain SP-35 indicates that the β-aryl ether catabolic system is not only present in the family of Sphingomonadaceae, but also other species of bacteria kingdom. These newly elucidated catabolic pathways of lignin in strain SP-35 and the enzymes responsible for them provide exciting biotechnological opportunities for lignin valorization in future.
  相似文献   

12.
13.

Background

Biofuel has been the focus of intensive global research over the past few years. The development of 4th generation biofuel production (algae-to-biofuels) based on metabolic engineering of algae is still in its infancy, one of the main barriers is our lacking of understanding of microalgal growth, metabolism and biofuel production. Although fatty acid (FA) biosynthesis pathway genes have been all cloned and biosynthesis pathway was built up in some higher plants, the molecular mechanism for its regulation in microalgae is far away from elucidation.

Results

We cloned main key genes for FA biosynthesis in Haematococcus pluvialis, a green microalga as a potential biodiesel feedstock, and investigated the correlations between their expression alternation and FA composition and content detected by GC-MS under different stress treatments, such as nitrogen depletion, salinity, high or low temperature. Our results showed that high temperature, high salinity, and nitrogen depletion treatments played significant roles in promoting microalgal FA synthesis, while FA qualities were not changed much. Correlation analysis showed that acyl carrier protein (ACP), 3-ketoacyl-ACP-synthase (KAS), and acyl-ACP thioesterase (FATA) gene expression had significant correlations with monounsaturated FA (MUFA) synthesis and polyunsaturated FA (PUFA) synthesis.

Conclusions

We proposed that ACP, KAS, and FATA in H. pluvialis may play an important role in FA synthesis and may be rate limiting genes, which probably could be modified for the further study of metabolic engineering to improve microalgal biofuel quality and production.  相似文献   

14.

Aims

The interactive effects of enhanced nitrogen (N) deposition and ultraviolet-B (UV-B) radiation on litter decomposition are still unknown. The aims are to test whether the interactive effects of the two environmental factors on litter decomposition and nutrient loss are stronger than that of each factor alone.

Methods

Experiment included five treatments: elevated UV-B radiation (UV-B, 10 % enhancement), low N addition (N1, 30 kg N ha?1 year?1), high N addition (N2, 60 kg N ha?1 year?1), the two combined treatments of the two factors (UV-B+N1 and UV-B+N2), and an unmanipulated control.

Results

The annual decomposition rates under combination of UV-B and N addition significantly decreased compared with that under UV-B and N additions for Pinus massoniana, and did also compared with that under UV-B but did not significantly differ with N additions for Cyclobalanopsis glauca. Negative effects of N additions alone on lignin degradation and P loss were partly offset but negative effect on N loss was further amplified when was combined with UV-B.

Conclusions

The combination of N deposition and UV-B radiation on litter decomposition and nutrient loss was significantly different from that of each factor alone without a general response pattern of decomposition, and was regulated by litter chemistry.  相似文献   

15.
[14C](lignin)-Acer rubrum L. was produced by infusing stems of A. rubrum with [14C](3′-side chain)-cinnamic acid. Groups (1g) of Nasutitermes exitiosus (Hill) were placed in sealed flasks which were aspirated over a 2-week period. These released up to 8.3% of the [14C](lignin)-A. rubrum as 14CO2. Termites maintained under standard conditions as 50 g non-breeding groups for 4 months or more showed diminished ability to degrade lignin. Optimal lignin degradation and survival of N. exitiosus was at 90 and 96% relative humidity (r.h.). At 75, 80 and 85% r.h., fungal growth in bioassay flasks was seen, but lignin degradation did not increase. At 100% r.h. where bacterial growth in faeces may have been encouraged due to the development of free water, termite survival was poor and lignin degradation decreased. Starved termites contained much more radioactivity (21.8 and 30.8%) than fed termites (1.6% radioactivity), probably due to greater coprophagy on deprivation of food. However, lignin degradation was only marginally higher in starved termites, suggesting lignin becomes progressively more resistant to termite degradation after passage through the gut.  相似文献   

16.
Aims: The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B‐9. Methods and Results: Comamonas sp. B‐9 was inoculated into kraft lignin‐mineral salt medium (KL‐MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low‐molecular‐weight compounds revealed that Comamonas sp. B‐9 was able to degrade kraft lignin (KL). COD in KL‐MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l?1 and laccase (Lac) of 1250 U l?1 were observed at 4th and 6th day, respectively. The low‐molecular‐weight compounds such as ethanediol, 3, 5‐dimethyl‐benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B‐9 based on GC‐MS analysis. Conclusions: This study confirmed that Comamonas sp. B‐9 could utilize KL as a sole carbon source and degrade KL to low‐molecular‐weight compounds. Significance and Impact of the Study: Comamonas sp. B‐9 may be useful in the utilization and bioconversion of lignin and lignin‐derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B‐9 in treatment of wastewater in pulp and paper industry is a meaningful work.  相似文献   

17.
18.
In the present study, we investigated the effects of l-DOPA (l-3,4-dihydroxyphenylalanine), an allelochemical exuded from the velvetbean (Mucuna pruriens L DC. var. utilis), on the growth and cell viability of soybean (Glycine max L. Merrill) roots. We analyzed the effects of l-DOPA on phenylalanine ammonia lyase (PAL), cinnamyl-alcohol dehydrogenase (CAD) and cell wall-bound peroxidase (POD) activities as well as its effects on phenylalanine, tyrosine and lignin contents in the roots. 3-day-old seedlings were cultivated in half-strength Hoagland nutrient solution (pH 6.0), with or without 0.5?mM l-DOPA, in a growth chamber at 25?°C for 6, 12, 18 or 24?h with a day/night regime of 1:1, and a photon flux density of 280???mol?m?2 s?1. In general, the length, fresh weight and dry weight of the roots decreased followed by a significant loss of cell viability. Phenylalanine, tyrosine and lignin contents as well as PAL, CAD and cell wall-bound POD activities increased after l-DOPA treatment. These results reinforce the susceptibility of soybean to l-DOPA, which increases the enzyme activity in the phenylpropanoid pathway and, therefore, provides precursors for the polymerization of lignin. In brief, these findings suggest that the inhibition of soybean root growth induced by exogenously applied l-DOPA may be due to excessive production of lignin in the cell wall.  相似文献   

19.

Background

Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production.

Results

The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis.

Conclusions

Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole body termite extracts evidenced their ability to cleave all types of glycosidic bonds present in plant polysaccharides. The comprehensive proteomic analysis, revealed a complete collection of hydrolytic enzymes including cellulases (GH1, GH3, GH5, GH7, GH9 and CBM 6), hemicellulases (GH2, GH10, GH11, GH16, GH43 and CBM 27) and pectinases (GH28 and GH29).  相似文献   

20.

Aims

The objective of this study was to investigate the effects of future warming and drought on (1) the biochemical composition of above-ground biomass of forage plants (Festuca arundinacea and Dactylis glomerata), (2) the potential mineralization of this material in soil, and (3) its priming effect on native soil organic matter.

Methods

We sampled above-ground plant material from spring regrowth and summer regrowth of a climate change experiment. While in spring, the plants were well watered, the summer regrowth was exposed to drought and elevated temperature (+3 °C) by infrared heating of the canopy during 3 weeks. We assessed the elemental and isotopic composition, lignin and non-cellulosic carbohydrate content and composition of plant material grown under all three conditions. Its mineralization potential in soil and priming effects were evaluated during laboratory incubation.

Results

Warming had no significant effect on elemental and stable isotope composition of both plant materials. In contrast, it resulted in reduction of lignin content for both plant species and decrease of the lignin-to-N ratio for F. arundinacea and increased non-cellulosic carbohydrate content for D. glomerata. Summer regrowth was characterised by increase of δ13C values, which is consistent with variations in stomatal conductance due to water shortage. Moreover, summer drought induced an increase in N content leading to decrease of the C/N ratio and increase of lignin-to-N ratio of summer regrowth compared to spring regrowth. Differences in decomposition were small, while priming effects were more strongly altered by the different exposure to enviromental.

Conclusion

Our results provide direct experimental evidence that extreme climatic events (high temperature and precipitation deficit) have an influence on soil carbon storage particularly through their effect on priming of native soil organic matter induced by altered plant litter. These effects seem to be governed by alterations of stoichiometry and to a smaller extent by alterations of plant chemical composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号