首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction  

Microvasculopathy is one of the characteristic features in patients with systemic sclerosis (SSc), but underlying mechanisms still remain uncertain. In this study, we evaluated the potential involvement of monocytic endothelial progenitor cells (EPCs) in pathogenic processes of SSc vasculopathy, by determining their number and contribution to blood vessel formation through angiogenesis and vasculogenesis.  相似文献   

2.

Introduction  

Circulating endothelial cells are increased in patients affected by systemic sclerosis (SSc) and their number strongly correlates with vascular damage. The effects of iloprost in systemic sclerosis are only partially known. We aimed at studying the gene expression profile of circulating endothelial cells and the effects of iloprost infusion and gene expression in patients with systemic sclerosis.  相似文献   

3.
Telocytes (TCs) are described as a particular type of cells of the interstitial space ( www.telocytes.com ). Their main characteristics are the very long telopodes with alternating podoms and podomers. Recently, we performed a comparative proteomic analysis of human lung TCs with fibroblasts, demonstrating that TCs are clearly a distinct cell type. Therefore, the present study aims to reinforce this idea by comparing lung TCs with endothelial cells (ECs), since TCs and ECs share immunopositivity for CD34. We applied isobaric tag for relative and absolute quantification (iTRAQ) combined with automated 2‐D nano‐ESI LC‐MS/MS to analyse proteins extracted from TCs and ECs in primary cell cultures. In total, 1609 proteins were identified in cell cultures. 98 proteins (the 5th day), and 82 proteins (10th day) were confidently quantified (screened by two‐sample t‐test, P < 0.05) as up‐ or down‐regulated (fold change >2). We found that in TCs there are 38 up‐regulated proteins at the 5th day and 26 up‐regulated proteins at the 10th day. Bioinformatics analysis using Panther revealed that the 38 proteins associated with TCs represented cellular functions such as intercellular communication (via vesicle mediated transport) and structure morphogenesis, being mainly cytoskeletal proteins and oxidoreductases. In addition, we found 60 up‐regulated proteins in ECs e.g.: cell surface glycoprotein MUC18 (15.54‐fold) and von Willebrand factor (5.74‐fold). The 26 up‐regulated proteins in TCs at 10th day, were also analysed and confirmed the same major cellular functions, while the 56 down‐regulated proteins confirmed again their specificity for ECs. In conclusion, we report here the first extensive comparison of proteins from TCs and ECs using a quantitative proteomics approach. Our data show that TCs are completely different from ECs. Protein expression profile showed that TCs play specific roles in intercellular communication and intercellular signalling. Moreover, they might inhibit the oxidative stress and cellular ageing and may have pro‐proliferative effects through the inhibition of apoptosis. The group of proteins identified in this study needs to be explored further for the role in pathogenesis of lung disease.  相似文献   

4.
Cultivation of microvascular endothelial cells from human preputial skin   总被引:5,自引:0,他引:5  
A procedure is described for the isolation and cultivation of microvascular endothelium from human skin. Neonatal foreskins are pooled, washed, minced, and dissociated by a mixture of collagenase and dispase. Microvascular endothelium, liberated in the form of intact capillary fragments, is incompletely separated from fibroblasts and epidermal cells by sieving through nylon mesh, followed by velocity sedimentation on 5% bovine serum albumin. The endothelium-enriched fraction has been maintained in primary culture for up to 3 weeks. The resulting epithelioid colonies have been characterized morphologically by both light and transmission electron microscopy and manifest all of the structural features that distinguish other, large-vessel endothelia in culture. In addition, immunohistochemical studies using an indirect fluorescent antibody technique demonstrate that these cells contain the endothelium-specific product, Factor VIII antigen.  相似文献   

5.
Primary culture of microvascular endothelial cells from bovine retina   总被引:11,自引:0,他引:11  
Summary To provide an in vitro system for studying retinal capillary function we have developed methods for isolation and culture of microvascular endothelial cells from retina. Retinal microvessels were isolated by homogenization of the retina and collection of the microvessels onto nylon mesh. Treatment of the isolated microvessels with collagenase and dispase followed by Percoll gradient centrifugation yielded endothelial cells that were largely free of pericytes. A homogeneous population of endothelial cells that were capable of at least six population doublings was obtained by plating onto a fibronectin coated substrate in plasma derived serum. The endothelial origin of these cells was confirmed by the presence of Factor VIII antigen, angiotensin converting enzyme activity, numerous tight junctions, and a cell surface that did not bind platelets. A second cell type, which did not exhibit these cell markers and which is presumably the intramural pericyte, was obtained when the isolated microvessels were plated on tissue culture grade plastic in fetal bovine serum. Supported by Research Grants 5R01-EY03772 and 5R01-ES02380 from the U.S. Public Health Service (G. W. G.) and Established Investigator Award 31-107 from the American Heart Association (A. L. B.).  相似文献   

6.
Cultivation of microvascular endothelial cells from human preputial skin   总被引:2,自引:0,他引:2  
Summary A procedure is described for the isolation and cultivation of microvascular endothelium from human skin. Neonatal foreskins are pooled, washed, minced, and dissociated by a mixture of collagenase and dispase. Microvascular endothelium, liberated in the form of intact capillary fragments, is incompletely separated from fibroblasts and epidermal cells by sieving through nylon mesh, followed by velocity sedimentation on 5% bovine serum albumin. The endothelium-enriched fraction has been maintained in primary culture for up to 3 weeks. The resulting epithelioid colonies have been characterized morphologically by both light and transmission electron microscopy and manifest all of the structural features that distinguish other, large-vessel endothelia in culture. In addition, immunohistochemical studies using an indirect fluorescent antibody technique demonstrate that these cells contain the endothelium-specific product, Factor VIII antigen. This work was supported by National Institutes of Health Grants AM18904 and AM20571, the RGK Foundation, the Charlotte and Sidney Lifschultz Foundation, the Juvenile Diabetes Foundation, and the South Carolina Geenral Medical Faculty Research Appropriation.  相似文献   

7.

Background

Loss of the pulmonary microvasculature in the pathogenesis of emphysema has been put forward as a credible alternative to the classical inflammatory cell driven proteolysis hypothesis. Mechanistic studies in this area have to date employed animal models, immortalised cell lines, primary endothelial cells isolated from large pulmonary arteries and non-pulmonary tissues and normal human pulmonary microvascular endothelial cells. Although these studies have increased our understanding of endothelial cell function, their relevance to mechanisms in emphysema is questionable. Here we report a successful technique to isolate and characterise primary cultures of pulmonary microvascular endothelial cells from individuals with severe emphysema.

Methods

A lobe of emphysematous lung tissue removed at the time of lung transplantation surgery was obtained from 14 patients with severe end-stage disease. The pleura, large airways and large blood vessels were excised and contaminating macrophages and neutrophils flushed from the peripheral lung tissue before digestion with collagenase. Endothelial cells were purified from the cell mixture via selection with CD31 and UEA-1 magnetic beads and characterised by confocal microscopy and flow cytometry.

Results

Successful isolation was achieved from 10 (71%) of 14 emphysematous lungs. Endothelial cells exhibited a classical cobblestone morphology with high expression of endothelial cell markers (CD31) and low expression of mesenchymal markers (CD90, αSMA and fibronectin). E-selectin (CD62E) was inducible in a proportion of the endothelial cells following stimulation with TNFα, confirming that these cells were of microvascular origin.

Conclusions

Emphysematous lungs removed at the time of transplantation can yield large numbers of pulmonary microvasculature endothelial cells of high purity. These cells provide a valuable research tool to investigate cellular mechanisms in the pulmonary microvasculature relevant to the pathogenesis of emphysema.  相似文献   

8.
Given its broad effects in endothelium, vascular endothelial growth factor (VEGF) represents the primary rate‐limiting step of angiogenesis. Therefore, VEGF targeting therapies were soon developed. Bevacizumab and ranibizumab are two of these therapeutic agents already in clinical use. Bevacizumab was first used for cancer treatment, whereas ranibizumab was designed to target choroidal neovascularization, the main cause of blindness in age‐related macular degeneration. The present study aims to compare the multiple effects of bevacizumab and ranibizumab in human microvascular endothelial cells (HMECs). HMEC cultures were established and treated during 24 h with the anti‐VEGF agents within the intravitreal‐established concentration range or excipients. Analyses of VEGF content in cell media and VEGF receptor‐2 (VEGFR‐2) expression in cell lysates were performed. No cell cytotoxicity (MTS assay) was found in anti‐VEGF‐treated cultures at any concentration. Apoptosis (TUNEL assay) was significantly increased and cell proliferation (BrdU assay), migration (transwell assay) and assembly into vascular structures were significantly reduced by incubation with both agents at the two doses used. These findings were accompanied by a strong decrease in VEGF release, and in phosphorylated VEGFR‐2 and Akt expression for both agents at the clinical concentration. Interestingly, phosphorylated Erk was only significantly reduced upon bevacizumab treatment. In addition, proliferation was more affected by ranibizumab, whereas migration, capillary formation, and phosphorylated VEGFR2 expression were significantly reduced by bevacizumab as compared to ranibizumab. Therefore, although both agents presented anti‐angiogenic actions, distinct effects were exerted by the two molecules in HMEC. These findings suggest that a careful confirmation of these effects in clinical settings is mandatory. J. Cell. Biochem. 108: 1410–1417, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Angiogenesis requires invasion of extracellular matrix (ECM) proteins by endothelial cells and occurs in hypoxic and acidic environments that are not conducive for cell growth and survival. We hypothesize that angiogenic cells must exhibit a unique system to regulate their cytosolic pH in order to cope with these harsh conditions. The plasmalemmal vacuolar type H(+)-ATPase (pmV-ATPase) is used by cells exhibiting an invasive phenotype. Because angiogenesis is impaired in diabetes, we hypothesized that pmV-ATPase is decreased in microvascular endothelial cells from diabetic rats. The in vitro angiogenesis assays demonstrated that endothelial cells were unable to form capillary-like structures in diabetes. The proton fluxes were slower in cells from diabetic than normal model, regardless of the presence or absence of Na(+) and HCO(3) (-) and were suppressed by V-H(+)-ATPase inhibitors. Immunocytochemical data revealed that pmV-ATPases were inconspicuous at the plasma membrane of cells from diabetic whereas in normal cells were prominent. The pmV-ATPase activity was lower in cells from diabetic than normal models. Inhibition of V-H(+)-ATPase suppresses invasion/migration of normal cells, but have minor effects in cells from diabetic models. These novel observations suggest that the angiogenic abnormalities in diabetes involve a decrease in pmV-ATPase in microvascular endothelial cells.  相似文献   

10.
In microvessels, periendothelial cells expressing alpha smooth muscle actin (alphaSMA) interact with the endothelial cells and are essential for vessel maturation and stabilization. In adult tissues, the cellular origin of the periendothelial cells is still not clear, in particular in humans. To determine the origin of human periendothelial cells, we used a recently developed 3D co-culture system that mimics human skin connective tissue. This system is composed of normal human dermal fibroblasts (NHDF), human dermal microvascular endothelial cells (HMEC-1), and a collagen matrix. In this system, "microvessels" composed of an endothelial lumen associated with periendothelial cells develop. Using this co-culture system, we (i) labelled fibroblasts with the vital dye CFDA-SE, cultured them with unlabelled endothelial cells, and observed that only endothelium-associated CFDA-SE-labelled cells express alphaSMA; (ii) infected endothelial cells with a retrovirus stably expressing eGFP, cultured them with unlabelled fibroblasts, and observed that cells expressing alphaSMA did not co-express eGFP, but were associated with the eGFP-expressing endothelial cells of the microvessels. Together, these results indicate that periendothelial cells arise by differentiation from fibroblasts and that they require interaction with endothelial cells to do so.  相似文献   

11.

Introduction

Systemic sclerosis (SSc) is a connective tissue disorder characterized by endothelial cell injury, autoimmunity and fibrosis. The following three fibrillin-1 alterations have been reported in SSc. (1) Fibrillin-1 microfibrils are disorganized in SSc dermis. (2) Fibrillin-1 microfibrils produced by SSc fibroblasts are unstable. (3) Mutations in the FBN1 gene and anti-fibrillin-1 autoantibodies have been reported in SSc. Fibrillin-1 microfibrils, which are abundantly produced by blood and lymphatic microvascular endothelial cells (B-MVECs and Ly-MVECs, respectively), sequester in the extracellular matrix the latent form of the potent profibrotic cytokine transforming growth factor β (TGF-β). In the present study, we evaluated the effects of SSc sera on the deposition of fibrillin-1 and microfibril-associated glycoprotein 1 (MAGP-1) and the expression of focal adhesion molecules by dermal B-MVECs and Ly-MVECs.

Methods

Dermal B-MVECs and Ly-MVECs were challenged with sera from SSc patients who were treatment-naïve or under cyclophosphamide (CYC) treatment and with sera from healthy controls. Fibrillin-1/MAGP-1 synthesis and deposition and the expression of αvβ3 integrin/phosphorylated focal adhesion kinase and vinculin/actin were evaluated by immunofluorescence and quantified by morphometric analysis.

Results

Fibrillin-1 and MAGP-1 colocalized in all experimental conditions, forming a honeycomb pattern in B-MVECs and a dense mesh of short segments in Ly-MVECs. In B-MVECs, fibrillin-1/MAGP-1 production and αvβ3 integrin expression significantly decreased upon challenge with sera from naïve SSc patients compared with healthy controls. Upon challenge of B-MVECs with sera from CYC-treated SSc patients, fibrillin-1/MAGP-1 and αvβ3 integrin levels were comparable to those of cells treated with healthy sera. Ly-MVECs challenged with SSc sera did not differ from those treated with healthy control sera in the expression of any of the molecules assayed.

Conclusions

Because of the critical role of fibrillin-1 in sequestering the latent form of TGF-β in the extracellular matrix, its decreased deposition by B-MVECs challenged with SSc sera might contribute to dermal fibrosis. In SSc, CYC treatment might limit fibrosis through the maintenance of physiologic fibrillin-1 synthesis and deposition by B-MVECs.  相似文献   

12.
13.
The present study compares some phenotypic and physiologic characteristics of microvascular and macrovascular endothelial cells from within one human organ. To this end microvascular endothelial cells from human full-term placenta (PLEC) were isolated using a new method and compared with macrovascular human umbilical vein endothelial cells (HUVEC) and an SV40-transformed placental venous endothelial cell line (HPEC-A2). PLEC were isolated by enzymatic perfusion of small placental vessels, purified on a density gradient and cultured subsequently. Histological sections of the enzyme-treated vessels showed a selective removal of the endothelial lining in the perfused placental cotyledons. The endothelial identity of the cells was confirmed by staining with the endothelial markers anti-von Willebrand factor, Ulex europaeus lectin and anti-QBEND10. The cells internalized acetylated low-density lipoprotein and did not show immunoreactivity with markers for macrophages, smooth muscle cells and fibroblasts. The spindle-shaped PLEC grew in swirling patterns similar to that described for venous placental endothelial cells. However, scanning electron microscopic examination clearly showed that PLEC remained elongated at the confluent state, in contrast to the more polygonal phenotype of HPEC-A2 and HUVEC that were studied in parallel. The amount of vasoactive substances (endothelin-1,2, thromboxane, angiotensin II, prostacyclin) released into the culture medium and the proliferative response to cytokines was more similar to human dermal microvessels (MIEC) derived from non-fetal tissue than to HUVEC. Potent mitogens such as vascular endothelial growth factors (VEGF121, VEGF165) and basic fibroblast growth factor (FGF-2) induced proliferation of all endothelial cell types. Placental growth factors PIGF-1 and PIGF-2 effectively stimulated cell proliferation on PLEC (142 +/- 7% and 173 +/- 10%) and MIEC (160 +/- 20% and 143 +/- 28%) in contrast to HUVEC (9 +/- 8% and 15 +/- 20%) and HPEC-A2 (15 +/- 7% and 24 +/- 6%) after 48 h incubation time under serum-free conditions. These data support evidence for (1) the microvascular identity of the isolated PLEC described in this study, and (2) the phenotypic and physiologic heterogeneity of micro- and macrovascular endothelial cells within one human organ.  相似文献   

14.
15.
In this study, we hypothesized that Streptococcus suis induces the shedding of adhesion molecules from the surface of human brain microvascular endothelial cells (HBMEC), which may contribute to the ongoing pathophysiological processes of meningitis. When HBMEC were stimulated with whole cells of S. suis S735, significantly larger amounts of soluble intercellular adhesion molecule-1 (sICAM-1) were shed into conditioned medium while basal levels of soluble E-cadherin and P-selectin were unaffected. At a multiplicity of infection of 1 and 10, S. suis increased the concentration of sICAM-1 3.5- and 5-fold, respectively. A capsule-deficient mutant of S. suis induced more shedding than the parental strain. In addition, an S. suis cell wall preparation dose-dependently stimulated ICAM-1 shedding. Specific inhibitors of tyrosine kinase, mitogen-activated extracellular kinase 1, 2, and c-JUN N-terminal kinase significantly reduced S. suis-mediated ICAM-1 release. ICAM-1 shedding was also inhibited by a specific inhibitor of matrix metalloproteinases. The capacity of S. suis to induce ICAM-1 shedding has many functional implications that may contribute to the pathophysiological process of meningitis.  相似文献   

16.
In order to identify new genes overexpressed in endothelial cells exposed to hypoxia, differential display RT-PCR was performed on total RNA extracted from human microvascular endothelial cells incubated under hypoxia or under normoxic conditions. Northern blot and reverse Northern blot analyses were used to confirm the results. Sequences corresponding to tissue inhibitor of metalloproteinase-1, prostate tumor inducing factor-1, enolase-alpha and prothymosin-alpha were evidenced as overexpressed in hypoxia. These results were confirmed by Western blot and immunofluorescence experiments. Moreover, several elements homologous to partial sequences of cDNA (expressed sequence tag) were also identified, as well as unknown cDNA sequences. The present study suggests that hypoxia can change the expression of numerous genes in endothelial cells, and that mRNA differential display is useful for cloning known and unknown hypoxia-responsive genes.  相似文献   

17.
Summary A method to culture rat cerebral microvascular endothelial cells (RCMECs) was developed and adapted to concurrently obtain cultures of rat aortic endothelial cells (RAECs) without subculturing, cloning, or “weeding.” The attachment and growth requirements of endothelial cell clusters from isolated brain microvessels were first evaluated. RCMECs required fetal bovine serum to attach efficiently. Attachment and growth also depended on the matrix provided (fibronectin≈laminin>gelatin>poly-d-lysine≈Matrigel>hyaluronic acid≈plastic) and the presence of endothelial cell growth supplement and heparin in the growth medium. Non-endothelial cells are removed by allowing these cells to attach to a matrix that RCMECs attach to poorly (e.g., poly-d-lysine) and then transferring isolated endothelial cell clusters to fibronectin-coated dishes. These cell cultures, labeled with 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarboxyamine perchlorate (DiI-Ac-LDL) and analyzed using flow cytometry, were 97.7±2.6% (n=6) pure. By excluding those portions designed to isolate brain microvessels, the method was adapted to obtain RAEC cultures. RAECs do not isolate as clusters and have different morphology in culture, but respond similarly to matrices and growth medium supplements. RCMECs and RAECs have Factor VIII antigen, accumulate DiI-Ac-LDL, contain Weibel-Palade bodies, and have complex junctional structures. The activities of γ-glutamyl transferase and alkaline phosphatase were measured as a function of time in culture. RCMECs had higher enzymatic activity than RAECs. In both RCMECs and RAECs enzyme activity decreased with time in culture. The function of endothelial cells is specialized depending on its location. This culture method allows comparison of two endothelial cell cultures obtained using very similar culture conditions, and describes their initial characterization. These cultures may provide a model system to study specialized endothelial cell functions and endothelial cell differentiation. This work was funded by the National Institutes of Health grant RO1-NS-21076, and AHA-GIA 881134. Support for Ellen Gordon provided by the National Institutes of Health, NSO7144 and the Seattle Affiliate of the AHA (88-WA-111, 89-WA-112).  相似文献   

18.
Human lymphatic endothelial cells (LECs) have isolated prevalently from human derma and tumors. As specialized lymphatic organs within the oropharynx, palatine tonsils are easily obtained and rich in lymphatic venules. Using a two-step purification method based on the sorting of endothelial cells with Ulex Europaeus Agglutinin 1 (UEA-1)-coated beads, followed by purification with monoclonal antibody D2-40, we successfully purified LECs from human palatine tonsils. The LECs were expanded on flasks coated with collagen type 1 and fibronectin for up to 8-10 passages and then analyzed for phenotypic and functional properties. Cultured cells retained the phenotypic pattern of the lymphatic endothelium of palatine tonsils and expressed functional VEGFR-3 molecules. In fact, stimulation with VEGFR-3 ligand, the vascular endothelium grow factor C, induced a marked increase in cell proliferation. Similarly to blood endothelial cells (BECs), LECs were able to form tube-like structure when seeded in Cultrex basement membrane extract. Comparative studies performed on LECs derived from palatine tonsils and iliac lymphatic vessels (ILVs), obtained with the same procedures, showed substantial discrepancies in the expression of various lymphatic markers. This points to the existence of micro- and macrovessel-derived LECs with different phenotypes, possibly involving different biological activities and functions. Palatine tonsil- and ILV-derived LECs may, therefore, represent new models for investigating function and biochemical properties of these lymphatic endothelia.  相似文献   

19.
微血管内皮细胞的分离方法   总被引:1,自引:0,他引:1  
Mei ZJ  Chen SF 《生理科学进展》1998,29(3):275-276
微血管内皮细胞(MECs)既是被动屏障又主动参与机体许多生理和病理过程。MECs的分离培养是研究其形态和功能不可缺少的手段。本文介绍了目前常用的和最新的MECs的分离方法  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号