首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of residual dipolar couplings (RDCs) in the Delta131Delta fragment of staphylococcal nuclease has demonstrated that its ensemble-averaged structure is resistant to perturbations such as high concentrations of urea, low pH, and substitution of hydrophobic residues, suggesting that its residual structure is encoded by local side-chain/backbone interactions. In the present study, the effects of these same perturbations on the backbone dynamics of Delta131Delta were examined through (1)H-(15)N relaxation methods. Unlike the global structure reported by RDCs, the transverse relaxation rates R(2) were quite sensitive to denaturing conditions. At pH 5.2, Delta131Delta exhibits an uneven R(2) profile with several characteristic peaks involving hydrophobic chain segments. Protonation of carboxyl side chains by lowering the pH reduces the values of R(2) along the entire chain, yet these characteristic peaks remain. In contrast, high concentrations of urea or the substitution of 10 hydrophobic residues eliminates these peaks and reduces the R(2) values by a greater amount. The combination of low pH and high urea leads to further decreases in R(2). These denaturant-induced increases in backbone mobility are also reflected in decreases in (15)N NOEs and in relaxation interference parameters, with the former reporting an increase in fast motions and the latter a decrease in slow motions. Comparison between the changes in chain dynamics and the corresponding changes in Stokes radius and the patterns of RDCs suggests that regional variations in backbone dynamics in denatured nuclease arise primarily from local contacts between hydrophobic side chains and local interactions involving charged carboxyl groups.  相似文献   

2.
The pH dependence of stability of staphylococcal nuclease was studied with two independent equilibrium thermodynamic approaches. First, by measurement of stability in the pH range 9 to 3.5 by fluorescence-monitored denaturation with urea (Delta), GdnHCl (Delta), and heat (Delta). Second, by numerical integration of H(+) titration curves (Delta) measured potentiometrically under native (100 mM KCl) and unfolding (6.0 M GdnHCl) conditions. The pH dependence of stability described by Delta, Delta, and Delta was comparable but significantly different from the one described by Delta. The decrease in Delta between pH 9 and pH 4 was 4 kcal/mol greater than the decrease in Delta, Delta, and Delta in the same pH range. In 6 M GdnHCl, all the ionizable groups titrated with the pK(a) values of model compounds. Therefore, Delta represents the free energy difference between the native state (N) and an ensemble of unstructured, or expanded, and highly screened conformations. In contrast, the shallower pH dependence of stability described by Delta and by Delta between pH 9 and 5 was consistent with the titration of histidines with depressed, nativelike pK(a) values in the denatured state (D). These depressed pK(a) values likely reflect long-range electrostatic interactions with the other 29 basic groups and are a consequence of the compact character of the D state. The steep change in Delta and Delta at pH < 5 suggests that near pH 5 the structural and thermodynamic character of the D state shifts toward a state in which acidic residues titrate with normal pK(a) values, presumably because the electrostatic interactions with basic residues are lost, maybe as a consequence of an expansion.  相似文献   

3.
The self-association reaction of denatured staphylococcal nuclease fragments, urea-denatured G88W110, containing residues 1-110 and mutation G88W, and physiologically denatured 131-residue Delta 131 Delta, have been characterized by NMR at close to neutral pH. The two fragments differ in the extent and degree of association due to the different sequence and experimental conditions. Residues 13-39, which show significant exchange line broadening, constitute the main association interface in both fragments. A second weak association region was identified involving residues 79-105 only in the case of urea-denatured G88W110. For residues involved in the association reaction, significant suppression of the line broadening and small but systematic chemical shift variation of the amide protons were observed as the protein concentration decreased. The direction of chemical shift change suggests that the associated state adopts mainly beta-sheet-like conformation, and the beta-hairpin formed by strands beta 2 and beta 3 is native-like. The apparent molecular size obtained by diffusion coefficient measurements shows a weak degree of association for Delta 131 Delta below 0.4 mM protein concentration and for G88W110 in 4 M urea. In both cases the fragments are predominantly in the monomeric state. However, the weak association reaction can significantly influence the transverse relaxation of residues involved in the association reaction. The degree of association abruptly increases for Delta 131 Delta above 0.4 mM concentration, and it is estimated to form a 4 to 8 mer at 2 mM. It is proposed that the main region involved in association forms the core structure, with the remainder of residues largely disordered in the associated state. Despite the obvious influence of the association reaction on the slow motion of the backbone, the restricted mobility on the nanosecond timescale around the region of strand beta 5 is essentially unaffected by the association reaction and degree of denaturation.  相似文献   

4.
Recently we performed molecular dynamics (MD) simulations on the folding of the hairpin peptide DTVKLMYKGQPMTFR from staphylococcal nuclease in explicit water. We found that the peptide folds into a hairpin conformation with native and nonnative hydrogen-bonding patterns. In all the folding events observed in the folding of the hairpin peptide, loop formation involving the region YKGQP was an important event. In order to trace the origins of the loop propensity of the sequence YKGQP, we performed MD simulations on the sequence starting from extended, polyproline II and native type I' turn conformations for a total simulation length of 300 ns, using the GROMOS96 force field under constant volume and temperature (NVT) conditions. The free-energy landscape of the peptide YKGQP shows minima corresponding to loop conformation with Tyr and Pro side-chain association, turn and extended conformational forms, with modest free-energy barriers separating the minima. To elucidate the role of Gly in facilitating loop formation, we also performed MD simulations of the mutated peptide YKAQP (Gly --> Ala mutation) under similar conditions starting from polyproline II conformation for 100 ns. Two minima corresponding to bend/turn and extended conformations were observed in the free-energy landscape for the peptide YKAQP. The free-energy barrier between the minima in the free-energy landscape of the peptide YKAQP was also modest. Loop conformation is largely sampled by the YKGQP peptide, while extended conformation is largely sampled by the YKAQP peptide. We also explain why the YKGQP sequence samples type II turn conformation in these simulations, whereas the sequence as part of the hairpin peptide DTVKLMYKGQPMTFR samples type I' turn conformation both in the X-ray crystal structure and in our earlier simulations on the folding of the hairpin peptide. We discuss the implications of our results to the folding of the staphylococcal nuclease.  相似文献   

5.
Enzymatic Detection of the Growth of Staphylococcus aureus in Foods   总被引:12,自引:9,他引:3       下载免费PDF全文
A specific method has been developed for the extraction and measurement of staphylococcal nuclease in foods in which Staphylococcus aureus has grown. The method was used to compare staphylococcal growth with nuclease production in foods under varying conditions of temperature, aerobiosis, and competition from other microorganisms. It was concluded that the nuclease is produced under any conditions that permit growth of S. aureus, and little or no interference with the test was encountered either from mixed, natural populations or from a variety of pure, laboratory cultures. Nuclease and enterotoxin A production were shown to vary in synchrony for the 234 (Casman) strain of S. aureus, and the sensitivity of the enzymatic detection of nuclease was comparable to the sensitivity of serological detection of enterotoxin A. It was found that 15 min at 121 C was required to reduce the nuclease activity in slurries of contaminated ham below the level present in the unheated slurry. The extraordinary heat resistance of the nuclease permits its detection even in foods heated subsequent to the growth of S. aureus. The nuclease analysis requires about 3 hr to complete and requires no unusual equipment or reagents.  相似文献   

6.
Hsp90 is a ubiquitous molecular chaperone. Previous structural analysis demonstrated that Hsp90 can adopt a large number of structurally distinct conformations; however, the functional role of this flexibility is not understood. Here we investigate the structural consequences of substrate binding with a model system in which Hsp90 interacts with a partially folded protein (Δ131Δ), a well-studied fragment of staphylococcal nuclease. SAXS measurements reveal that under apo conditions, Hsp90 partially closes around Δ131Δ, and in the presence of AMPPNP, Δ131Δ binds with increased affinity to Hsp90's fully closed state. FRET measurements show that Δ131Δ accelerates the nucleotide-driven open/closed transition and stimulates ATP hydrolysis by Hsp90. NMR measurements reveal that Hsp90 binds to a specific, highly structured region of Δ131Δ. These results suggest that Hsp90 preferentially binds a locally structured region in a globally unfolded protein, and this binding drives functional changes in the chaperone by lowering a rate-limiting conformational barrier.  相似文献   

7.
E James  P G Wu  W Stites  L Brand 《Biochemistry》1992,31(42):10217-10225
The protein from a mutant clone of staphylococcal nuclease with a cysteine substituting for a lysine at position 78 was prepared and labeled with a cysteine-specific fluorescent probe 5-[[2-[(iodoacetyl)-amino]ethyl]amino]naphthalene-1-sulfonic acid (IAEDANS). Time-resolved nonradiative energy-transfer studies were done using the single tryptophan at position 140 as the energy donor and the IAEDANS as the receptor. Changes in distance and distance distributions were observed as a function of increasing guanidinium (GuHCl) concentration (0-2 M) and in the presence or absence of Ca2+ and inhibitor 2'-deoxythymidine 3',5'-diphosphate (pdTp). In the native state, both the ternary complex and the noncomplexed protein are best fit with one population having an average donor-acceptor distance of approximately 23 A and an "apparent" full width at half-maximum (fwhm) of distance distribution of approximately 18 A. Besides the contribution of linker arm of the acceptor, it appears that there are some conformational heterogeneties either due to the disordering of the tryptophan region or due to the whole protein in the native state. During GuHCl unfolding, the average distance remains relatively constant up to GuHCl concentrations where both the ternary complex and the ligand-free protein are denatured (1-1.3 M). The compact denatured states persist up to 2 M GuHCl. At 2 M GuHCl, the heterogeneity of the denatured state in the ternary complex is much larger than that of the ligand-free nuclease. The results show that the denatured states of staphylococcal nuclease mutant K78C by GuHCl are compact and these compact denatured states are likely due to residual structures or incompletely disrupted hydrophobic cores under these conditions.  相似文献   

8.
It is important to understand the conformational features of the unfolded state in equilibrium with folded state under physiological conditions. In this paper, we consider a short peptide model LMYKGQPM from staphylococcal nuclease to model the conformational equilibrium between a hairpin conformation and its unfolded state using molecular dynamics simulation under NVT conditions at 300K using GROMOS96 force field. The free energy landscape has overall funnel-like shape with hairpin conformations sampling the minima. The "unfolded" state has a higher free energy of approximately 12kJ/mol with respect to native hairpin minimum and occupies a plateau region. We find that the unfolded state has significant contributions from compact conformations. Many of these conformations have hairpin-like topology. Further, these compact conformational forms are stabilized by hydrophobic interactions. Conversion between native and non-native hairpins occurs via unfolded states. Frequent conversions between folded and unfolded hairpins are observed with single exponential kinetics. We compare our results with the emerging picture of unfolded state from both experimental and theoretical studies.  相似文献   

9.
Ackerman MS  Shortle D 《Biochemistry》2002,41(46):13791-13797
A nativelike low-resolution structure has been shown to persist in the Delta 131 Delta denatured fragment of staphylococcal nuclease, even in the presence of 8 M urea. In this report, the physical-chemical basis of this structure is addressed by monitoring changes in structure reflected in residual dipolar couplings and diffusion coefficients as a function of changes in amino acid sequence. Ten large hydrophobic residues, previously shown to play dominant roles in the stability of the native state, are replaced with polar residues of similar shape. Modest increases in the Stokes radius determined by NMR methods result from replacement of five isoleucine/valine residues with threonine, one leucine with glutamine, and oxidation of four methionines to the sulfoxides. Yet in the presence of all ten hydrophobic to polar substitutions and 8 M urea, the NMR signature of a native-like topology is still largely intact. In addition, removal of 30 residues from either the N-terminus (which deletes a three-strand beta meander) or C-terminus (a long extended segment and the final alpha helix) produces only very small changes in long-range structure. These data indicate that both the general shape of the denatured state and the angular relationships of individual bond angles to the axes describing the spatial distribution of the protein chain are insensitive to large changes in the amino acid sequence, a finding consistent with the conclusion that the long-range structure of denatured proteins is encoded primarily by local steric interactions between side chains and the polypeptide backbone.  相似文献   

10.
When compact simian virus 40 (SV40) minichromosomes are treated with staphylococcal nuclease at 0 °C under limit-digest conditions, about one-third of the minichromosomes remain resistant to nuclease, a third of them are nicked, while the remaining third suffer one and only one double-stranded cut. Results show that each cleaved minichromosome is cut only once and afterwards becomes resistant to further fragmentation. This is in marked contrast to the action of staphylococcal nuclease at 37 °C, which leads to a rapid fragmentation of all minichromosomes to oligo- and mononucleosomes.The SV40 linear DNA III produced by low-temperature nuclease digestion of minichromosomes was redigested with single-cut restriction endonucleases. By this mapping procedure it was determined that the location of the staphylococcal nuclease cut is neither unique nor random; it occurs at a number of discrete sites on the DNA, half of all cuts being concentrated at the origin of replication and nearby in the “late” portion of the SV40 genome. Control experiments have shown that when staphylococcal nuclease digests naked SV40 DNA at 0 °C it does not “hesitate” after the first cut. Although initial cuts in the purified DNA are non-random in location, their distribution is quite different from that generated by a low-temperature nuclease digestion of compact SV40 minichromosomes. Possible interpretations of these results are discussed in view of the recent finding that a specific region of the SV40 genome is uniquely exposed in the minichromosome (Varshavsky et al., 1978, 1979; Scott &; Wigmore, 1978).  相似文献   

11.
Nishimura C  Uversky VN  Fink AL 《Biochemistry》2001,40(7):2113-2128
The stability and folding kinetics of wild-type and a mutant staphylococcal nuclease (SNase) at neutral pH are significantly perturbed by the presence of moderate to high concentrations of salts. Very substantial increases in stability toward thermal and urea denaturation were observed; for example, 0.4 M sodium sulfate increased the free energy of wild-type SNase by more than 2 kcal/mol. For the NCA SNase mutant, the presence of the salts abolished the cold denaturation observed at neutral pH with this variant, and substantially increased its stability. Significant effects of salts on the kinetics of refolding were also observed. For NCA SNase, the presence of the salts markedly increased the folding rates (up to 5-fold). On the other hand, chloride, in particular, substantially decreased the rate of folding of the wild-type protein. Since the rates of the slow phases due to proline isomerization were increased by salt, these steps must be coupled to conformational processes. Fluorescence energy transfer between the lone tryptophan (Trp140) and an engineered fluorescent acceptor at residue 64 revealed that the addition of a high concentration of KCl led to the formation of a transient folding intermediate not observed at lower salt concentrations, and in which residues 140 and 64 were much closer than in the native state. The salt-induced effects on the kinetics of folding are attributed to the enhanced stability of the transient folding intermediates. It is likely that the combination of the high net charge, due to the high isoelectric point, and the relatively low intrinsic hydrophobicity, leads to staphylococcal nuclease having only marginal stability at neutral pH. The salt-induced effects on the structure, stability, and kinetics of staphylococcal nuclease are attributed to the binding of counterions, namely, anions, resulting in minimization of intramolecular electrostatic repulsion. This leads to increased stability, more structure, and greater compactness, as observed. Consequently, localized electrostatic repulsion is present at neutral pH in SNase, probably contributing to its marginal stability. The results suggest that, in general, marginally stable globular proteins will be significantly stabilized by salts under conditions where they have a substantial net charge.  相似文献   

12.
A quadruple mutant of staphylococcal nuclease, nuclease (V66L/G79S/G88V/L108V), has been crystallized in a form well suited to moderate-to-high resolution x-ray diffraction analysis. This mutant is highly unstable; only about 20% of the protein in solution at room temperature is in its folded form. Under the crystallization conditions, the protein exhibits circular dichroism properties similar to, but not identical with, those of native wild type protein. The crystals belong to the space group P6(1)22 or P6(5)22 with unit cell dimensions of a = b = 61.1 A, c = 170.1 A and diffract to at least 2.5 A resolution. A data set complete to 3.7 A resolution has been collected and processed; attempts to determine the structure using molecular replacement techniques are under way.  相似文献   

13.
We investigated the role of W140 in the folding of Staphylococcal nuclease. For this purpose, we constructed the 19 possible substitution mutations at residue 140. Only three mutants, W140F, W140H, and W140Y, adopted native-like structures under physiological conditions and showed native-like enzymatic activities. In contrast, the other 16 mutants took on compact unfolded structures under physiological conditions and the enzymatic activities of these mutants were decreased to approximately 70% of wild-type levels. These 16 mutants maintained substrate-induced foldability. These results strongly indicate that the side-chain information encoded by residue 140 is essential to maintain a stable native structure, and that this residue must be an aromatic side chain. The order of thermal stability was wild type > W140H > W140F = W140Y. Therefore, the five-membered nitrogen-containing ring of the indole is thought to bear the essential information. In the crystal structure of staphylococcal nuclease, the five-membered ring is at the local center of the C-terminal cluster through hydrophobic interactions. This cluster plays a key role in the interaction connecting the C-terminal region and the N-terminal beta-core. Mutants other than W140H, W140F, and W140Y lost the ability to form the local core, which caused the loss of the long-range interactions between the C-terminal and N-terminal regions. Inhibitor or substrate binding to these mutants compensates for the lack of long-range interactions generated by W140.  相似文献   

14.
The invariance of NMR residual dipolar couplings (RDCs) in denatured forms of staphylococcal nuclease to changes in denaturant concentration or amino acid sequence has previously been attributed to the robustness of long-range structure in the denatured state. Here we compare RDCs of the wild-type nuclease with those of a fragment that retains a folded OB-fold subdomain structure despite missing the last 47 of 149 residues. The RDCs of the intact protein and of the truncation fragment are substantially different under conditions that favor folded structure. By contrast, there is a strong correlation between the RDCs of the full-length protein and the fragment under denaturing conditions (6 M urea). The RDCs of the folded and unfolded forms of the proteins are uncorrelated. Our results suggest that RDCs are more sensitive to structural changes in folded than unfolded proteins. We propose that the greater susceptibility of RDCs in folded states is a consequence of the close packing of the polypeptide chain under native conditions. By contrast, the invariance of RDCs in denatured states is more consistent with a disruption of cooperative structure than with the retention of a unique long-range folding topology.  相似文献   

15.
Using frequency domain methods, the fluorescence decay of Trp-140 in staphylococcal nuclease and its site-directed mutant (Pro-117----Gly) has been examined. Based on nuclear magnetic resonance (NMR) studies (Evans, P. A., C. M. Dobson, R. A. Kautz, G. Hatfull, and R. O. Fox. 1987. Nature [Lond.]. 329:266-268), it is believed that nuclease exists in two macroscopic, native conformations and that the slow interconversion of these conformations is controlled by the cis----trans isomerization of Pro-117. The above mutant shows only one native conformation in NMR experiments. To test the hypothesis that the biexponential fluorescence decay of Trp-140 of nuclease can also be related to the existence of these conformational states of the protein, we have compared the decay patterns of the wild type and mutant. Essentially no difference was observed, which indicates that there is some other basis for the nonexponential decay of Trp-140. We have used global nonlinear least squares analysis to link the fit of data at several temperatures.  相似文献   

16.
W A Scott  D J Wigmore 《Cell》1978,15(4):1511-1518
Simian virus 40 (SV40) chromatin isolated from infected BSC-1 cell nuclei was incubated with deoxyribonuclease I, staphylococcal nuclease or an endonuclease endogenous to BSC-1 cells under conditions selected to introduce one doublestrand break into the viral DNA. Full-length linear DNA was isolated, and the distribution of sites of initial cleavage by each endonuclease was determined by restriction enzyme mapping. Initial cleavage of SV40 chromatin by deoxyribonuclease I or by endogenous nuclease reduced the recovery of Hind III fragment C by comparison with the other Hind III fragments. Similarly, Hpa I fragment B recovery was reduced by comparison with the other Hpa I fragments. When isolated SV40 DNA rather than SV40 chromatin was the substrate for an initial cut by deoxyribonuclease I or endogenous nuclease, the recovery of all Hind III or Hpa I fragments was approximately that expected for random cleavage. Initial cleavage by staphylococcal nuclease of either SV40 DNA or SV40 chromatin occurred randomly as judged by recovery of Hind III or Hpa I fragments. These results suggest that, in at least a portion of the SV40 chromatin population, a region located in Hind III fragment C and Hpa I fragment B is preferentially cleaved by deoxyribonuclease I or by endogenous nuclease but not by staphylococcal nuclease.Complementary information about this nuclease-sensitive region was provided by the appearance of clusters of new DNA fragments after restriction enzyme digestion of DNA from viral chromatin initially cleaved by endogenous nuclease. From the sizes of new fragments produced by different restriction enzymes, preferential endonucleolytic cleavage of SV40 chromatin has been located between map positions 0.67 and 0.73 on the viral genome.  相似文献   

17.
Lactobacillus delbrueckii ssp. bulgaricus ( L. bulgaricus ) genome sequence analysis revealed the presence of two genes that encode histone-like HU proteins ( hlbA and hlbB ) showing extensive similarity to other bacterial homologues. These genes were found to be extremely conserved among several L. bulgaricus strains. The hlbA gene was shown to be constitutively transcribed from a unique promoter ( phlbA ) during normal growth, whereas hlbB did not seem to be expressed under usual laboratory conditions. Using a reporter cassette in which the staphylococcal nuclease was fused at its N-terminus to the lactococcal signal peptide Usp45 (SP Usp45), we have demonstrated that phlbA promotes high expression of the reporter in L. bulgaricus , which correlated with an abundant secretion of the mature nuclease in the supernatant fraction. Quantification of the exported enzyme reveals a secretion level approximately threefold higher when the expression of the reporter was under the control of phlbA compared with the lactococcal usp45 promoter. Together, these results indicate that phlbA is suitable for gene expression in L. bulgaricus , that SP Usp45 is functionally recognized and processed by the L. bulgaricus secretion machinery and that the nuclease reporter gene can be used for the identification of exported products in this bacterium.  相似文献   

18.
Unless the native conformation has an unstructured region, proteases cannot effectively digest a protein under native conditions. Digestion must occur from a higher energy form, when at least some part of the protein is exposed to solvent and becomes accessible by proteases. Monitoring the kinetics and denaturant dependence of proteolysis under native conditions yields insight into the mechanism of proteolysis as well as these high-energy conformations. We propose here a generalized approach to exploit proteolysis as a tool to probe high-energy states in proteins. This "native state proteolysis" experiment was carried out on Escherichia coli ribonuclease HI. Mass spectrometry and N-terminal sequencing showed that thermolysin cleaves the peptide bond between Thr92 and Ala93 in an extended loop region of the protein. By comparing the proteolysis rate of the folded protein and a peptidic substrate mimicking the sequence at the cleavage site, the energy required to reach the susceptible state (Delta G(proteolysis)) was determined. From the denaturant dependence of Delta G(proteolysis), we determined that thermolysin digests this protein through a local fluctuation, i.e. localized unfolding with minimal change in solvent assessable surface area. Proteolytic susceptibilities of proteins are discussed based on the finding of this local fluctuation mechanism for proteolysis under native conditions.  相似文献   

19.
Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins.  相似文献   

20.
The ovalbumin gene in chick oviduct nuclei or nucleosomes is digested preferentially by either DNase I or staphylococcal nuclease. Staphylococcal nuclease preferentially cuts between and within core particles of the oviduct ovalbumin gene; thus, the ovalbumin gene is more quickly degraded to mononucleosomes and the DNA within these monomers is digested to a nonhybridizable size significantly faster than the chicken globin gene. Mono- and oligonucleosomes generated by partial staphylococcal nuclease digestion at 0 degrees C, but not at 37 degrees C, retain equal sensitivity to DNase I. Most of this sensitivity persists when histone H1 and most of the non-histone chromosomal proteins are removed with 0.6 M NaCl. On the basis of these observations, we propose that nuclease sensitivity of the oviduct ovalbumin gene is due to covalent modifications of the core histones and that this sensitivity is amplified by interaction of other chromosomal proteins with these modified histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号