首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activated neutrophils contribute to the development and severity of acute lung injury (ALI). Phosphoinositide 3-kinases (PI3-K) and the downstream serine/threonine kinase Akt/protein kinase B have a central role in modulating neutrophil function, including respiratory burst, chemotaxis, and apoptosis. In the present study, we found that exposure of neutrophils to endotoxin resulted in phosphorylation of Akt, activation of NF-kappaB, and expression of the proinflammatory cytokines IL-1beta and TNF-alpha through PI3-K-dependent pathways. In vivo, endotoxin administration to mice resulted in activation of PI3-K and Akt in neutrophils that accumulated in the lungs. The severity of endotoxemia-induced ALI was significantly diminished in mice lacking the p110gamma catalytic subunit of PI3-K. In PI3-Kgamma(-/-) mice, lung edema, neutrophil recruitment, nuclear translocation of NF-kappaB, and pulmonary levels of IL-1beta and TNF-alpha were significantly lower after endotoxemia as compared with PI3-Kgamma(+/+) controls. Among neutrophils that did accumulate in the lungs of the PI3-Kgamma(-/-) mice after endotoxin administration, activation of NF-kappaB and expression of proinflammatory cytokines was diminished compared with levels present in lung neutrophils from PI3-Kgamma(+/+) mice. These results show that PI3-K, and particularly PI3-Kgamma, occupies a central position in regulating endotoxin-induced neutrophil activation, including that involved in ALI.  相似文献   

2.
It is well established that activation of neutrophils within the pulmonary circulation produces acute lung injury in which adherence of neutrophils to endothelial cells is an obligatory step in the mechanism of injury. The effects of in vivo activation of neutrophils on the in vitro responses of these cells to stimulation have not been determined, although such information may be important in understanding how different etiological factors may interact to produce infection or acute respiratory failure. By using an assay to sequentially measure superoxide anion (O2-) release from adherent neutrophils stimulated with phorbol myristate acetate (PMA), we measured the in vitro activation response of peripheral blood neutrophils isolated before and 24 h after infusion of zymosan-activated plasma (ZAP; or untreated plasma as a control), air bubbles, or PMA in awake, instrumented sheep. Each of the three inflammatory agents produced an increase in lung microvascular permeability characteristic of acute lung injury; control plasma did not. For the in vivo ZAP experiments, stimulated O2- release in vitro by using PMA was approximately 50% lower (P less than 0.05) for neutrophils isolated 24 h after the in vivo infusion (4.3 +/- 0.8 nmol/500,000 cells) than before (8.1 +/- 0.2 nmol/500,000 cells). For the air emboli or PMA in vivo experiments, there were no changes in neutrophil activation responses in vitro. Similarly, infusion of control plasma did not result in reduced neutrophil O2- release. These results show that alterations in the inflammatory potential of neutrophils may occur in vivo and that such alterations appear to be dependent on the mechanism and agent by which lung injury is produced.  相似文献   

3.
Caspase-1, the prototypic caspase, is known to process the cytokines IL-1beta and IL-18 to mature forms but it is unclear whether, like other caspases, it can induce apoptosis by activation of downstream protease cascades. Neutrophils are known to express caspase-1, to release IL-1beta and to undergo rapid, caspase-dependent apoptosis. We examined apoptosis and IL-1beta production in peripheral blood neutrophils of caspase-1-deficient and wild-type mice. Constitutive apoptosis of caspase-1-deficient neutrophils was delayed compared with wild-type neutrophils and LPS-mediated inhibition of apoptosis was absent, but caspase-1-deficient neutrophils were susceptible to Fas-mediated apoptosis. LPS-stimulated IL-1beta production was absent from caspase-1-deficient neutrophils. To ascertain whether these differences in apoptosis and IL-1beta production would alter the response to acute lung injury, we studied pulmonary neutrophil accumulation following intratracheal administration of LPS. Caspase-1-deficient mice showed increased, predominantly neutrophilic pulmonary inflammation, but inflammation had resolved in both wild-type and deficient animals by 72 h after LPS instillation. IL-1beta production was increased in wild-type lungs but was also detected in caspase-1-deficient mice. We conclude that caspase-1 modulates apoptosis of both peripheral blood and inflammatory neutrophils, but is not essential for IL-1beta production in the lung.  相似文献   

4.
5.
The changes in circulation and migration of mature and immature neutrophils during 12 h of hypothermia have been studied using an experimental pig model. At 29 degrees C the number of circulating neutrophils fell from 5 +/- 1.1 at 37 degrees C to 3.5 +/- 0.6 X 10(9)/l and then remained unchanged while hypothermia was maintained. The number of circulating immature neutrophils did not fall during hypothermia. During hypothermia, hydrocortisone failed to stimulate the release of mature and immature neutrophils from the bone marrow. In contrast, endotoxin caused a profound neutropenia followed by a gradual increase in the number of circulating mature neutrophils, which by 6 h, was similar to the number circulating before endotoxin administration. At 29 degrees C the number of circulating immature neutrophils also fell following endotoxin but then increased over the number circulating before endotoxin administration by approximately 10-fold. Compared with neutrophil migration at 37 degrees C, very few mature or immature neutrophils migrated to an inflammatory site during the 12 h of hypothermia (29 degrees C). Unlike hypothermia in vitro, where neutrophil function may improve with time in vivo, neutrophil function remains compromised.  相似文献   

6.
Neutrophil associated lung injury is identified with a variety of local and systemic priming insults. In vitro studies have shown that TNF-alpha mediated suppression of neutrophil apoptosis is due to the secretion of interleukin-8 (IL-8), a human chemokine shown to alter neutrophil chemotaxis. Our initial in vitro antibody neutralization studies with neutrophil chemotactic proteins, keratinocyte-derived chemokine (KC) and macrophage inflammatory protein-2alpha (MIP-2alpha), mouse IL-8 homologues, indicate that MIP-2alpha but not KC appears to mediate TNF-alpha suppression of mouse neutrophil apoptosis. Therefore, we hypothesized that in vivo neutralization of KC or MIP-2alpha during an initial priming insult would produce differential effects on the extent of lung injury by restoring normal neutrophil apoptotic function. To assess this, mice were hemorrhaged followed with septic challenge at 24 h. Antibody against KC or MIP-2alpha or a nonspecific IgG was given during resuscitation immediately following hemorrhage. Anti-MIP-2alpha treatment resulted in a significant reduction in lung tissue IL-6 and myeloperoxidase levels. Percentage of neutrophil apoptosis increased significantly in the anti-KC group. Tissue and plasma KC and MIP-2alpha were reduced in their respective treatment groups. These data suggest that KC and MIP-2alpha differ in their mediation of neutrophil function (apoptosis and chemotaxis) and contribution to the pathogenesis of lung injury following hemorrhage subsequent to sepsis.  相似文献   

7.
Lung lavage fluid of patients with acute lung injury (ALI) has increased levels of interleukin-1 (IL-1) and neutrophils, but their relationship to the lung leak that characterizes these patients is unclear. To address this concern, we investigated the role of the neutrophil agonist platelet-activating factor [1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (PAF)] in the development of the acute neutrophil-dependent lung leak that is induced by giving IL-1 intratracheally to rats. We found that PAF acetyltransferase and PAF activities increased in lungs of rats given IL-1 intratracheally compared with lungs of sham-treated rats given saline intratracheally. The participation of PAF in the development of lung leak and lung neutrophil accumulation after IL-1 administration was suggested when treatment with WEB-2086, a commonly used PAF-receptor antagonist, decreased lung leak, lung myeloperoxidase activity, and lung lavage fluid neutrophil increases in rats given IL-1 intratracheally. Additionally, neutrophils recovered from the lung lavage fluid of rats given IL-1 intratracheally reduced more nitro blue tetrazolium (NBT) in vitro than neutrophils recovered from control rats or rats that had been given WEB-2086 and then IL-1. Histological examination indicated that the endothelial cell-neutrophil interfaces of cerium chloride-stained lung sections of rats given IL-1 contained increased cerium perhydroxide (the reaction product of cerium chloride with hydrogen peroxide) compared with lungs of control rats or rats treated with WEB-2086 and then given IL-1 intratracheally. These in vivo findings were supported by parallel findings showing that WEB-2086 treatment decreased neutrophil adhesion to IL-1-treated cultured endothelial cells in vitro. We concluded that PAF contributes to neutrophil recruitment and neutrophil activation in lungs of rats given IL-1 intratracheally.  相似文献   

8.
We have previously demonstrated that administration of the recently described cytokine IL-17 in rat airways in vivo recruits and activates neutrophils locally. In the current study, we examined whether endogenous IL-17 is involved in mediating neutrophil recruitment caused by endotoxin exposure in mouse airways. Our in vivo data show that local endotoxin exposure causes the release of free, soluble IL-17 protein 6 h later. Systemic pretreatment with a neutralizing anti-IL-17 Ab almost completely inhibits neutrophil recruitment 24 h, but not 6 h, after endotoxin exposure in the airways. Pretreatment with neutralizing anti-IL-6 and anti-macrophage inflammatory protein (MIP)-2 Abs inhibits neutrophil recruitment caused by local endotoxin exposure and IL-17, respectively. Our in vitro data show that endotoxin exposure stimulates the release of soluble IL-17 protein in T lymphocytes harvested from lung and spleen, respectively, and that this cytokine release requires coculture with airway macrophages. Intracellular IL-17 protein is detected in T lymphocytes from spleen but not in airway macrophages after coculture and stimulation of these two cell types. Finally, anti-IL-17 does not alter endotoxin-induced release of IL-6 and MIP-2 from T lymphocytes and airway macrophages in coculture. In conclusion, our results indicate that endotoxin exposure causes the release of IL-17 from T lymphocytes and that this cytokine release requires the presence of macrophages. Once released, endogenous IL-17 acts in part by inducing local release of neutrophil-mobilizing cytokines such as IL-6 and MIP-2, from nonlymphocyte, nonmacrophage cells, and this contributes to recruitment of neutrophils in the airways. These IL-17-related mechanisms constitute potential targets for pharmacotherapy against exaggerated neutrophil recruitment in airway disease.  相似文献   

9.
A significant fraction of IL-8 in lung fluids from patients with the acute lung injury (ALI) is associated with anti-IL-8 autoantibodies (anti-IL-8:IL-8 complexes), and lung fluid concentrations of these complexes correlate with development and outcome of ALI. In this study, we examined whether anti-IL-8:IL-8 complexes exhibit proinflammatory activity in vitro. These complexes were purified from pulmonary edema fluid samples obtained from patients with ALI. First, we found that IL-8 bound to the autoantibody retained its ability to trigger chemotaxis of neutrophils, whereas control antibody did not have significant chemotactic activity. Next, we examined the ability of anti-IL-8:IL-8 complexes to induce neutrophil activation, i.e., neutrophil respiratory burst and degranulation. Anti-IL-8:IL-8 complexes triggered superoxide and myeloperoxidase release from human neutrophils, and in contrast, the control antibody had no effect. We also demonstrated that IgG receptor, FcgammaRIIa, is the receptor involved in cellular activation mediated by these complexes. Blockade of FcgammaRIIa completely reverses activity of the complexes with the exception of chemotaxis. Both FcgammaRIIa and IL-8 receptors mediate chemotactic activity of anti-IL-8:IL-8 complexes, with FcgammaRIIa being, however, a predominant receptor. Furthermore, activity of the complexes is partially dependent on the activation of the mitogen-activated protein kinases, i.e., ERK and p38, important components of the FcgammaRIIa signaling cascade. Anti-IL-8:IL-8 complexes may therefore be involved in the pathogenesis of lung inflammation in clinical acute lung injury.  相似文献   

10.
11.
The intrapulmonary instillation of C5a results in a local inflammatory response that, in this site, is accompanied by a decrease in local blood flow. Reversal of this decrease by vasodilators or the thromboxane synthesis inhibitor dazmegral has been shown to result in enhanced lung inflammation. In the present study the mechanisms underlying the decrease in flow in pulmonary inflammation were investigated in the rabbit in vivo and in the isolated blood-perfused rabbit lung. In vivo, the decrease in local blood flow was shown to be dependent on circulating neutrophils. In the isolated blood-perfused lung, inflammation induced by airway instillation of C5a was similar histologically to that seen in vivo and was also accompanied by a decrease in local blood flow. The decrease in blood flow appeared to require circulating neutrophils and was prevented by dazmegral and the platelet-activating factor (PAF) antagonists WEB 2086 and L-659,989. Furthermore, no decrease occurred in aspirin-treated lungs perfused with normal blood, suggesting that the source of thromboxane was lung rather than circulating cells. The decrease in blood flow in inflammation did not appear to be a consequence of hypoxic vasoconstriction. Inflammation in the guinea pig lung was also accompanied by a decrease in local blood flow and was also prevented by dazmegral and PAF antagonists. We conclude that local inflammation in the lung is accompanied by a decrease in blood flow that involves neutrophils and the lipid mediators PAF and thromboxane. We suggest that this form of negative feedback by the neutrophil serves to control the inflammatory response.  相似文献   

12.
The early response cytokines, TNF and IL-1, have overlapping biologic effects that may function to propagate, amplify, and coordinate host responses to microbial challenges. To determine whether signaling from these early response cytokines is essential to orchestrating innate immune responses to intrapulmonary bacteria, the early inflammatory events induced by instillation of Escherichia coli into the lungs were compared in wild-type (WT) mice and mice deficient in both TNF receptor 1 (TNFR1) and the type I IL-1 receptor (IL1R1). Neutrophil emigration and edema accumulation induced by E. coli were significantly compromised by TNFR1/IL1R1 deficiency. Neutrophil numbers in the circulation and within alveolar septae did not differ between WT and TNFR1/IL1R1 mice, suggesting that decreased neutrophil emigration did not result from decreased sequestration or delivery of intravascular neutrophils. The nuclear translocation of NF-kappa B and the expression of the chemokine macrophage inflammatory protein-2 did not differ between WT and TNFR1/IL1R1 lungs. However, the concentration of the chemokine KC was significantly decreased in the bronchoalveolar lavage fluids of TNFR1/IL1R1 mice compared with that in WT mice. Thus, while many of the molecular and cellular responses to E. coli in the lungs did not require signaling by either TNFR1 or IL1R1, early response cytokine signaling was critical to KC expression in the pulmonary air spaces and neutrophil emigration from the alveolar septae.  相似文献   

13.
Neutrophils constitute the first line of host defense against invading microorganisms. Yet their removal from the inflammatory environment is fundamental for injury restraint and resolution of inflammation. Nicotinamide, a component of vitamin B(3), is known to modulate cell survival. In this study, we assessed the influence of nicotinamide on neutrophil apoptosis, both in vitro and in vivo in a mouse model of endotoxin-induced lung inflammation. In vitro, nicotinamide promoted apoptosis of human blood neutrophils in a dose-dependent manner in the presence of the apoptosis inhibitors granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor. The highest concentration of nicotinamide completely neutralized the pro-survival effect of granulocyte (macrophage) colony-stimulating factor. Nicotinamide proapoptotic effect was associated with enhanced caspase-3 activity. In addition, nicotinamide slightly reduced neutrophil chemotaxis in vitro. In vivo, pulmonary nicotinamide delivery decreased the levels of cellular and biochemical inflammation markers and increased the percentage of apoptotic neutrophils in bronchoalveolar lavages. Our findings suggest that nicotinamide is an apoptotic stimulus for neutrophils, thereby contributing to the resolution of neutrophilic inflammation in the lungs.  相似文献   

14.
Many neutrophil responses, including chemotaxis, exocytosis, respiratory burst activity and chemokine synthesis, are mediated by p38 MAPK. MAPK-activated protein kinase-2 (MK2) is activated by p38 MAPK in human neutrophils. The present study tested the hypothesis that MK2 mediates multiple p38 MAPK-dependent responses in human neutrophils by comparing the effect of the p38 MAPK inhibitor, SB203580, with an MK2 inhibitory peptide. Both SB203580 and MK2 inhibitory peptide attenuated respiratory burst activity, exocytosis, and chemotaxis. Lipopolysaccharide (LPS)-induced IL-8 production was inhibited by SB203580, but not by the MK2 inhibitory peptide. Inhibition of chemotaxis and respiratory burst activity by SB203580 was less than that of MK2 inhibitory peptide. Inhibition of extracellular signal-regulated kinase (ERK) activity by PD98059 attenuated superoxide release and chemotaxis, and simultaneous treatment with SB203580 and PD98059 demonstrated additive inhibition. ERK phosphorylated MK2 in vitro and activated MK2 in f-methionyl-leucyl-phenylalanine (FMLP)-stimulated neutrophils. These data suggest that MK2 mediates both ERK- and p38 MAPK-dependent neutrophil responses.  相似文献   

15.
Role of IL-18 in acute lung inflammation.   总被引:12,自引:0,他引:12  
We have examined the role of IL-18 after acute lung inflammation in rats caused by intrapulmonary deposition of IgG immune complexes. Constitutive IL-18 mRNA and protein expression (precursor form, 26 kDa) were found in normal rat lung, whereas in inflamed lungs, IL-18 mRNA was up-regulated; in bronchoalveolar (BAL) fluids, the 26-kDa protein form of IL-18 was increased at 2-4 h in inflamed lungs and remained elevated at 24 h, and the "mature" protein form of IL-18 (18 kDa) appeared in BAL fluids 1-8 h after onset of inflammation. ELISA studies confirmed induction of IL-18 in inflamed lungs (in lung homogenates and in BAL fluids). Prominent immunostaining for IL-18 was found in alveolar macrophages from inflamed lungs. When rat lung macrophages, fibroblasts, type II cells, and endothelial cells were cultured in vitro with LPS, only the first two produced IL-18. Intratracheal administration of rat recombinant IL-18 in the lung model caused significant increases in lung vascular permeability and in BAL content of neutrophils and in BAL content of TNF-alpha, IL-1beta, and cytokine-induced neutrophil chemoattractant, whereas intratracheal instillation of anti-IL-18 greatly reduced these changes and prevented increases in BAL content of IFN-gamma. Intratracheal administration of the natural antagonist of IL-18, IL-18 binding protein, resulted in suppressed lung vascular permeability and decreased BAL content of neutrophils, cytokines, and chemokines. These findings suggest that endogenous IL-18 functions as a proinflammatory cytokine in this model of acute lung inflammation, serving as an autocrine activator to bring about expression of other inflammatory mediators.  相似文献   

16.
Neutrophils have been implicated in the pathogenesis of many inflammatory lung diseases, including chronic obstructive pulmonary disease and asthma. With this study, we investigated how disruption of cAMP signaling impacts the function of neutrophil recruitment to the lung. Four genes code for type 4 phosphodiesterases (PDE4s), enzymes critical for regulation of cAMP levels and cell signaling. Ablation of two of these genes, PDE4B and PDE4D, but not PDE4A, has profound effects on neutrophil function. In a paradigm of mouse lung injury induced by endotoxin inhalation, the number of neutrophils recovered in the bronchoalveolar lavage was markedly decreased in PDE4D(-/-) and PDE4B(-/-) mice 4 and 24 h after exposure to LPS. Acute PDE4 inhibition with rolipram had additional inhibitory effects on neutrophil migration in PDE4B(-/-) and, to a lesser extent, PDE4D(-/-) mice. This decreased neutrophil recruitment occurred without major changes in chemokine accumulation in bronchoalveolar lavage, suggesting a dysfunction intrinsic to neutrophils. This hypothesis was confirmed by investigating the expression of adhesion molecules on the surface of neutrophils and chemotaxis in vitro. CD18 expression was decreased after ablation of both PDE4B and PDE4D, whereas CD11 expression was not significantly affected. Chemotaxis in response to KC and macrophage inflammatory protein-2 was markedly reduced in PDE4B(-/-) and PDE4D(-/-) neutrophils. The effect of PDE4 ablation on chemotaxis was comparable, but not additive, to the effects of acute PDE4 inhibition with rolipram. These data demonstrate that PDE4B and PDE4D play complementary, but not redundant, roles in the control of neutrophil function.  相似文献   

17.
Clearance of neutrophils from inflamed sites is critical for resolution of inflammation, but pathogen-driven neutrophil apoptosis can impair host defenses. We previously showed that pyocyanin, a phenazine toxic metabolite produced by Pseudomonas aeruginosa, accelerates neutrophil apoptosis in vitro. We compared wild-type and pyocyanin-deficient strains of P. aeruginosa in a murine model of acute pneumonia. Intratracheal instillation of either strain of P. aeruginosa caused a rapid increase in bronchoalveolar lavage neutrophil counts up to 18 h after infection. In wild-type infection, neutrophil numbers then declined steadily, whereas neutrophil numbers increased up to 48 h in mice infected with pyocyanin-deficient P. aeruginosa. In keeping with these differences, pyocyanin production was associated with reduced bacterial clearance from the lungs. Neutrophil apoptosis was increased in mice infected with wild-type compared with the phenazine-deficient strain or two further strains that lack pyocyanin production, but produce other phenazines. Concentrations of potent neutrophil chemokines (MIP-2, KC) and cytokines (IL-6, IL-1beta) were significantly lower in wild-type compared with phenazine-deficient strain-infected mice at 18 h. We conclude that pyocyanin production by P. aeruginosa suppresses the acute inflammatory response by pathogen-driven acceleration of neutrophil apoptosis and by reducing local inflammation, and that this is advantageous for bacterial survival.  相似文献   

18.
AMP-activated protein kinase (AMPK) is activated by increases in the intracellular AMP-to-ATP ratio and plays a central role in cellular responses to metabolic stress. Although activation of AMPK has been shown to have anti-inflammatory effects, there is little information concerning the role that AMPK may play in modulating neutrophil function and neutrophil-dependent inflammatory events, such as acute lung injury. To examine these issues, we determined the effects of pharmacological activators of AMPK, 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) and barberine, on Toll-like receptor 4 (TLR4)-induced neutrophil activation. AICAR and barberine dose-dependently activated AMPK in murine bone marrow neutrophils. Exposure of LPS-stimulated neutrophils to AICAR or barberine inhibited release of TNF-alpha and IL-6, as well as degradation of IkappaBalpha and nuclear translocation of NF-kappaB, compared with findings in neutrophil cultures that contained LPS without AICAR or barberine. Administration of AICAR to mice resulted in activation of AMPK in the lungs and was associated with decreased severity of LPS-induced lung injury, as determined by diminished neutrophil accumulation in the lungs, reduced interstitial pulmonary edema, and diminished levels of TNF-alpha and IL-6 in bronchoalveolar lavage fluid. These results suggest that AMPK activation reduces TLR4-induced neutrophil activation and diminishes the severity of neutrophil-driven proinflammatory processes, including acute lung injury.  相似文献   

19.
Leukocyte activation by malarial pigment   总被引:1,自引:0,他引:1  
Malarial pigment, a unique hemozoin crystal composed of unit cells of heme dimers, is present in large amounts in circulating monocytes and neutrophils and can persist unchanged in macrophages for several months. In the present study, we investigated the effect of hemozoin not only on macrophages, but also on neutrophils. We used beta-hematin (BH), a chemically synthetic crystal structurally identical to hemozoin, for these studies. In vitro, BH up-regulated the expression of tumor necrosis factor-alpha in whole blood and in isolated peritoneal macrophages, indicating that hemozoin is able to stimulate monocytes. BH stimulated murine peritoneal neutrophils to express macrophage inflammatory protein-2 (MIP-2), a homologue of human interleukin-8 that is used as a marker of neutrophil activation. Injecting BH into the peritoneal cavity resulted in a dose-dependent migration of neutrophils and a high level of myeloperoxidase activity of peritoneal cells. Finally, BH directly induced neutrophil chemotaxis in vitro. Taken together, these results suggest that the malarial pigment hemozoin can activate leukocytes and may participate in the pathology of severe malaria.  相似文献   

20.
Endotoxin causes pulmonary vascular neutrophil sequestration and injures the lung. Whether this is primarily due to a direct effect of endotoxin on the endothelium or is mediated by an action on the neutrophil is unclear. Canine neutrophils, isolated on plasma-Percoll gradients in vitro, were incubated with Salmonella enteriditis endotoxin, washed, and injected via wedged pulmonary arterial catheters into discrete lung zones of anesthetized dogs, whereas untreated neutrophils were administered into contralateral control lung zones. 113mIn-transferrin was administered intravenously 2 h before the animals were killed. Morphometry and extravascular protein accumulation were assessed at 4 h. Endotoxin treatment of neutrophils ex vivo induced a two- to three-fold increase in neutrophils in these lung zones (0.096 +/- 0.012 vs. 0.05 +/- 0.002 neutrophils/alveolar septal intercept, P less than 0.05). Extravascular-to-intravascular protein ratios in zones receiving endotoxin-treated neutrophils were significantly increased compared with control zones (0.146 +/- 0.02 vs. 0.079 +/- 0.02, P less than 0.05). Because complement fragments increase injury to endothelium in vitro, exogenous C5 fragments were administered to other dogs before administration of neutrophils but failed to significantly increase the extravascular protein signal (0.154 +/- 0.03 vs. 0.124 +/- 0.04). In summary, endotoxin treatment of neutrophils leads to neutrophil sequestration and increased pulmonary extravascular protein accumulation. C5 fragments failed to further enhance the protein accumulation. These data are consistent with an effect of endotoxin on the neutrophil to initiate neutrophil-endothelial interaction and subsequent lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号