首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organogenesis of staminate flower clusters and flowers and some observations on the corresponding pistillate structures of Aphandra natalia are described and compared with those of the other two genera in the Phytelephantoideae (Arecaceae). In Aphandra, staminate flowers are borne in monopodial clusters of mostly four (1-6) flowers. Each flower is surrounded by two pairs of subopposite bracteoles and has two rather indistinctly four-parted whorls of perianth parts. Stamen primordia arise on a shallow apical dome and then centrifugally down the sides of a long, angled, and laterally flattened receptacle. Immediately before the staminate bud opens, the floral receptacle below the androecium rapidly elongates, becoming funnel-shaped, with the bracteoles and a perianth sheath adnate to it forming a pseudopedicel. Epidermal and subepidermal layers of these pseudopedicels split at anthesis and release a great number of raphide idioblasts that resemble the pollen grains in shape and size. It is hypothesized that the idioblasts deter pollen feeding or ovidepositing insects. The phylogenetic implications of these findings are important within the Phytelephantoideae and among palms in general.  相似文献   

2.
Discussion about thrips (Thysanoptera) as main pollinators has been controversial in the past because thrips do not fit the preconception of an effective pollinator. In this study, we present evidence for thrips pollination in the dioecious pioneer tree genus Macaranga (Euphorbiaceae). Macaranga hullettii is pollinated predominantly by one thrips species, Neoheegeria sp. (Phlaeothripidae, Thysanoptera). As a reward for pollinators, the protective floral bracteoles function as breeding sites for thrips and trichomal nectaries on the adaxial surface of the floral bracteoles provide alimentation. Flowering phenology of both staminate and pistillate trees was highly synchronized within 3-4 wk periods. In contrast to pistillate trees, staminate trees start to breed the thrips inside the developing inflorescences ~2 wk before anthesis. Breeding of Neoheegeria sp. in the laboratory indicates that the thrips development is completed within ~17 d. Thus, staminate trees offer breeding sites for one thrips generation until the onset of pollen presentation. Intraspecific pollen transfer by thrips was proved by pollen loads of thrips taken from receptive pistillate inflorescences of M. hullettii. Bagging experiments of different mesh sizes showed that seed set reached almost the level of open-pollinated flowers when exclusively tiny insects like thrips were able to enter the net bags, but no apomictic seed set occurred when no insect access was given to the flowers.  相似文献   

3.
Melocanna baccifera (Roxburgh) Kurtz ex Skeels, a species of bamboo introduced to Sri Lanka from India, flowered and set fruit during 2001–2002. Culms that flowered and set fruit died. The incidence of flowering is significant in that flowering took place close to the predicted mast flowering in 2007. At the onset of flowering, inflorescences were predominantly staminate. But later in 2002, bisexual and pistilate flowers also developed leading to fruiting. Both protandry and protogyny were observed in the bisexual florets. Floral characters indicated that the species was mainly out-crossing. Although anther dehiscence released pollen and stigmas were exerted, pollination of stigmas was inefficient. The few stigmas that were naturally pollinated showed limited pollen tube growth. However, fruit set took place. Fruits were very rarely seen to germinate naturally. Many fruits were devoid of an embryo, indicating that parthenocarpy and/or apomixis may have taken place. Excised embryos germinated in vitro .  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 143 , 287–291.  相似文献   

4.
The arctic, halophytic species Atriplex lapponica Pojark has flowers of two kinds: perfect ones surrounded by a pentamerous perianth and pistillate flowers enclosed in bracteoles. Thus, A. lapponica is closely related to the species of sect. Dichospermum Dumort, not to species of sect. Teutliopsis Dumort. as generally believed.  相似文献   

5.
Field and laboratory studies of 19 diclinous species endemic to Australia help to clarify the nature and evolution of andromonoecy, androdioecy, and dioecy in the genus Solanum. Ten species are andromonoecious; typically these species bear inflorescences with a single, large basal hermaphroditic flower and 12–60 distal, smaller staminate flowers. We suggest that the andromonoecious condition was derived from hermaphroditic-flowered ancestors in part by hemisterilization of flowers but largely by addition of staminate flowers. The resultant larger inflorescences are hypothesized to serve both to attract and to entrain pollinators, yielding more or higher-quality seed set in hermaphroditic flowers and/or greater dispersion of pollen from staminate flowers. We suggest that andromonoecy may also serve to reduce selling. Nine other species are morphologically androdioecious but functionally dioecious. In these species, staminate flowers, like those of the andromonoecious species, bear anthers with copious tricolporate pollen and a highly reduced gynoecium. The morphologically hermaphroditic flowers are functionally pistillate and borne singly in inflorescences, and they bear anthers with inaperturate pollen. The inaperturate pollen, although viable, never germinates and is hypothesized to be retained in pistillate flowers as a reward to pollinators in the nectarless Solanum flowers. All other species of Solanum studied with pollen dimorphism in which one pollen morph is inaperturate are also best treated as functionally dioecious. We conclude that there is no evidence for androdioecy in Solanum. A review of other families suggests that there is little support for this unusual breeding system in any other angiosperm group either. Preliminary analyses suggest that andromonoecy and dioecy are polyphyletic in Solanum. Furthermore, dioecy is as likely to have arisen from hermaphroditic as from andromonoecious ancestors.  相似文献   

6.
Abstract: Bougainvillea stipitata displays inflorescences with three pendant greenish flowers. Flowers open at sunset and last five days. Flower perianth is constricted in the middle and forms a tube that ends in five lobes. Fragrance is emitted by the papillae located on the lobe margins of the perianth. The nectary is located at the base of the staminal tube. It secretes fructose-dominant nectar with amino acids, phenols and reduced acids. Nectar secretion is continuous during flower lifetime and the flowers do not recover the reward. Mainly moths visit flowers. Pollen load on stigmas indicates that most flowers received more than 50 pollen grains, which are deposited by pollinators within the first two days of the flower life. Although the low natural fruit set of this self-incompatible species may be due to intraplant pollen flow, pollinators play an essential role for B. stipitata fruit production.  相似文献   

7.
We examined factors affecting the duration of the staminate and pistillate phases in the protandrous flowers of Campanula rapunculoides L. (Campanulaceae). Under conditions of natural pollinator visitation, flowers experiencing low rates of pollen removal lasted significantly longer than flowers that had faster rates of pollen removal. Experimental manipulations showed that low levels of pollen removal resulted in extension of the staminate phase. Hand-pollinations in which we varied the amount and source of pollen showed that when the number of fertilized ovules within an ovary is low, senescence of the flower is delayed, resulting in extension of the pistillate phase. We also report on pollinator foraging patterns within the vertical inflorescences of C. rapunculoides and the limiting factor for seed set in this population. The results are relevent to recent suggestions that floral characters often serve to reduce interference between the sexual functions in cosexual plants.  相似文献   

8.
This study deals with the phenology, pollination biology and floral morphology of Myrsine laetevirens , a neotropical dioecious tree. In Punta Lara (Argentina), its flowering period occurs during January-February. Both pistillate and staminate flowers are small, with a yellowish-green perianth and produce neither nectar nor odour. Staminate flowers have five stamens and a vestigial gynoecium while pistillate flowers, have non-functional anthers and a conspicuous stigma. The floral characteristics of staminate and pistillate plants are related to the syndrome of anemophily. Fruit set in inflorescences covered with mesh bags and observations prove that animals are not involved in the pollination process. A provisional cladistic analysis of Myrsinaceae shows that dioecy evolved as one of the most recent apomorphies of Myrsine and is part of the anemophilous syndrome.  相似文献   

9.
Myristica fragrans and M. malabarica are dioecious. Both staminate and pistillate plants produce axillary flowering structures. Each pistillate flower is solitary, borne terminally on a short, second-order shoot that bears a pair of ephemeral bracts. Each staminate inflorescence similarly produces a terminal flower and, usually, a third-order, racemose axis in the axil of each pair of bracts. Each flower on these indeterminate axes is in the axil of a bract. On the abaxial side immediately below the perianth, each flower has a bracteole, which is produced by the floral apex. Three tepal primordia are initiated on the margins of the floral apex in an acyclic pattern. Subsequent intercalary growth produces a perianth tube. Alternate with the tepals, three anther primordia arise on the margins of a broadened floral apex in an acyclic or helical pattern. Usually two more anther primordia arise adjacent to each of the first three primordia, producing a total of nine primordia. At this stage the floral apex begins to lose its meristematic appearance, but the residuum persists. Intercalary growth below the floral apex produces a columnar receptacle. The anther primordia remain adnate to the receptacle and grow longitudinally as the receptacle elongates. Each primordium develops into an anther with two pairs of septate, elongate microsporangia. In pistillate flowers, a carpel primordium encircles the floral apex eventually producing an ascidiate carpel with a cleft on the oblique apex and upper adaxial wall. The floral ontogeny supports the morphological interpretation of myristicaceous flowers as trimerous with either four-sporangiate anthers or monocarpellate pistils.  相似文献   

10.
Floral development of Araceae is compared with that of other basal monocots such as alismatids and Acorus. Flowers of Araceae, Acorus and several alismatids with spicate inflorescences lack a subtending floral bract. In Araceae and some Potamogetonaceae the subtending floral bract is suppressed, and not incorporated into the perianth. This differs from Acorus and some alismatids, where a bract-like median abaxial tepal is formed in the outer perianth whorl (i.e. developmental merger of flower-subtending bract and tepal). In Araceae, Acorus and spicate alismatids flowers develop unidirectionally, correlated with bract reduction. Araceae lack unidirectionality in the outer perianth whorl, in contrast t o Acorus and Juncaginaceae. The transition from trimerous to dimerous flowers in Onintiurn (Araceae) is by accentuation of the unidirectionality of the inner perianth. The gynoecium of Araceae and Acorus is synascidiate. However, in most Araceae the synascidiate portion is shorter than in Acorns, and a distinct basal elongation phase as in Acorus and Juncaginaceae was not found. The perianth and androecium of Lysichiton and Symplocarpus and the gynoecium of Gymnostachys differ from other Araceae and resemble those in Potamogetonaceae. Developmental findings support the isolation of Acorus from Araceae, and show similarities of Araceae with Potamogetonaceae and of Acorus with Juncaginaceae.  相似文献   

11.
12.
BACKGROUND AND AIMS: Eriocaulaceae (Poales) is currently divided in two subfamilies: Eriocauloideae, which comprises two genera and Paepalanthoideae, with nine genera. The floral anatomy of Actinocephalus polyanthus, Leiothrix fluitans, Paepalanthus chlorocephalus, P. flaccidus and Rondonanthus roraimae was studied here. The flowers of these species of Paepalanthoideae are unisexual, and form capitulum-type inflorescences. Staminate and pistillate flowers are randomly distributed in the capitulum and develop centripetally. This work aims to establish a floral nomenclature for the Eriocaulaceae to provide more information about the taxonomy and phylogeny of the family. METHODS: Light microscopy, scanning electron microscopy and chemical tests were used to investigate the floral structures. KEY RESULTS: Staminate and pistillate flowers are trimerous (except in P. flaccidus, which presents dimerous flowers), and the perianth of all species is differentiated into sepals and petals. Staminate flowers present an androecium with scale-like staminodes (not in R. roraimae) and fertile stamens, and nectariferous pistillodes. Pistillate flowers present scale-like staminodes (except for R. roraimae, which presents elongated and vascularized staminodes), and a gynoecium with a hollow style, ramified in stigmatic and nectariferous portions. CONCLUSIONS: The scale-like staminodes present in the species of Paepalanthoideae indicate a probable reduction of the outer whorl of stamens present in species of Eriocauloideae. Among the Paepalanthoideae genera, Rondonanthus, which is probably basal, shows vascularized staminodes in their pistillate flowers. The occurrence of nectariferous pistillodes in staminate flowers and that of nectariferous portions of the style in pistillate flowers of Paepalanthoideae are emphasized as nectariferous structures in Eriocaulaceae.  相似文献   

13.
Nanocnide zhejiangensis X.F. Jin & Y.F. Lu, a new species of Urticaceae from Zhejiang, east China, is described with illustrations. The new species is morphologically similar to Nanocnide japonica in having staminate inflorescence longer than leaves, but differs by having glabrous stems, petioles, peduncles and abaxial leaf surfaces, glabrous perianth lobes of staminate flowers, dorsally glabrous perianth lobes of pistillate flowers, and acuminate or solitary spinose–setaceous at the apex. Analysis based on ITS, atpF–H, atpB–rbcL and trnL–F sequences also demonstrate that Nanocnide japonica is the closest extant relative to the new species.  相似文献   

14.
Summary Flower and fruit characters were measured in ten female, five male and five fruiting male selections of A. deliciosa var deliciosa (A. Chev) Liang and Ferguson. Flowers from female vines had functional pistils, which contained many ovules. Stamens appeared to be fully developed but produced only empty pollen grains. Flowers from male vines had functional stamens that produced high percentages of pollen grains with stainable cytoplasmic contents. Pistils did not contain ovules and were generally small with vestigial styles. Fruiting male vines had both staminate and bisexual flowers. Staminate flowers were similar to those found on strictly male vines. Bisexual flowers produced ovules and stainable pollen. Pistils were smaller than in pistillate flowers. Although the three flower sexes differed in style length, ovary dimensions and ovules per carpel, staminate and bisexual flowers were similar in number of flowers per inflorescence, stamen filament length, pollen stainability, inflorescence rachis length and carpel number, and differed from pistillate flowers in these characters. The three flower sexes had similar sepal and petal numbers. The fruit of fruiting males were considerably smaller than those of females. Low ovule number appears to be the major factor limiting fruit size in the fruiting males studied. Prospects for developing hermaphroditic kiwifruit cultivars through breeding are discussed.  相似文献   

15.
The patterns of variability in the production of staminate inflorescences, pistillate flowers, and fruits for Carya ovata (Mill.) K. Koch and C. tomentosa (Poir.) Nutt. at Hutcheson Memorial Forest (Somerset County, New Jersey) were examined over a four-year period. We sought to determine 1) the patterns of variability in flowering and fruiting (within-trees, among-trees, and between-years), 2) if variable flowering might account for observed nut-bearing patterns, and 3) what were the relative contributions of intrinsic (genetic) and/or extrinsic (environmental) factors in determining flower production and fruit set. In general, our fine-scale analysis of shoots within canopies did not reveal a distinct mast fruiting pattern. While the number of male and female flowers varied significantly (among trees and between years), fruit set was not markedly affected. Variability of flowering and fruiting among shoots within trees was low. Both flowering and fruiting were observed to have a strong genetic and/or microenvironmental basis; however, flowering appeared more plastic and thus more sensitive to yearly environmental vagaries than did fruiting. Favorable environmental conditions at the time of flower differentiation may result in increased flower production; but, this does not necessarily result in increased fruit set. Many pistillate flowers abscise around the time of pollination and fertilization, apparently adjusting fruit set to available shoot resources. Approximately 50% of the pistillate flowers of both species fail to set fruit. Overall, individual trees exhibit their own flowering and fruiting schedules, suggesting the need to account for this level of variability in future studies of mast fruiting.  相似文献   

16.
Two new species of platanoid reproductive structure are described from the Bull Mountain locality in the Patapsco Formation (Potomac Group) of northeastern Maryland, USA. Pistillate inflorescences and infructescences (Platanocarpus elkneckensis sp. nov.) consist of flowers and fruits in sessile globose heads that are borne on an elongate axis. Individual pistillate flowers consist of five free carpels surrounded by prominent tepals. Staminate inflorescences, flowers and isolated stamens are assigned to Hamatia elkneckensis gen. et sp. nov. Staminate flowers are borne in a globose head with a small number of stamens (five?) per flower. Stamens consist of very short filaments, long anthers with strongly valvate dehiscence and an apically expanded connective. The connective expansion is frequently very well-developed, hook-like and extends down the ventral surface of the stamen. Anthers contain small, tricolporate, reticulate pollen. Association evidence, similarity of inflorescence structure and the occurrence of Hamatia-type pollen on flowers, carpels and fruits of Platanocarpus elkneckensis suggests that the staminate and pistillate material was produced by a single species of plant. The “Hamatia-plant” provides further evidence of pentamerous floral structure in mid-Cretaceous platanoids and documents the occurrence of unequivocal tricolporate pollen in the platanoid complex.  相似文献   

17.
Amorphophallus titanum Becc., discovered in 1878 by OdoardoBeccari in Sumatra has flowered only a few times in botanicalgardens. Its corms may weigh as much as 50 kg, have a diameterof 50–55 cm, a circumference of nearly 2 m and be 40cmhigh. The inflorescences, which produce a fetid smell, may last3–4 days and can reach a height of 2 m. The spadix isyellow-red in colour and the spathe greenish purple. Amorphophallus titanum, Araceae, inflorescence, spadix, spathe, corm, pistillate flowers, staminate flowers  相似文献   

18.
通过腊叶标本研究、野外观察和文献考证,结合栽培试验,研究了香蒲科水烛(Typha angustifolia L.)花部结构特征,补充描述了该种丝状毛在子房柄上的着生方式、小穗不孕雌花数目等性状特征,观察了在成熟期不同阶段其孕性雌花柱头与小苞片的长度变异。结果显示,水烛孕性雌花小苞片呈宽披针形、匙形或条形,先端褐色,短于柱头,或与柱头近等长或稍长于柱头;子房柄上的丝状毛除少数散生外,多数基部合生呈鞘状或束状,在子房柄下部呈1~4轮排列;小穗不孕雌花常3(~4)枚。研究材料在7月中旬前后雌花小苞片明显短于柱头,随果穗成熟小苞片与柱头近等长。长苞香蒲(T.domingensis Pers.)子房柄上的丝状毛形态和着生方式与水烛中的情况基本一致,但小苞片白色透明,小穗不孕雌花常1(~2)枚。这表明水烛孕性雌花小苞片和柱头的长度比例与不同成熟阶段有关系,不宜作为与长苞香蒲的区别特征,而小穗不孕雌花数目和小苞片颜色等特征对两物种的划分有较重要的意义。  相似文献   

19.
The pistillate inflorescence of Casuarina verticillata is described as consisting of a primary axis bearing whorls of bracts with a cymule in the axil of each bract of the more central whorls. Each cymule consists of an atepallate, two-carpellate, syncarpous floret and two, lateral, once-lobed bracteoles. A “peripheral intercalary” meristem, in which divisions are primarily periclinal, forms a meshwork beneath the bracts from early development and moves the connate bracts centrifugally around the cymules and extends and binds the bracts, and to some extent the bracteoles, of the fertile part of the inflorescence together. Each bract receives a single trace; each cymule receives two traces. Each bundle extension of a cymule trace supplies: 1) a branch which joins its counterpart to become the anterior common carpellary bundle; 2) a second branch which joins its counterpart to become the posterior common carpellary bundle; and 3) a central branch which supplies a lateral bracteole. Within each floret, each common carpellary bundle provides a dorsal carpellary bundle, two ventral carpellary bundles (fertile anterior carpel) or one common ventral bundle (sterile posterior carpel). The ventral bundle-supplies join and form a single placental bundle which lies in the gynoecial septum, and which, in turn, supplies the two ovules in the anterior carpel. Whether the inflorescence is a simple racemose or a condensed cymose type cannot be determined from this species alone. The function of the sclerenchymatous, enclosing bracteoles and connate bracts is discussed.  相似文献   

20.
花叶芋(天南星科)的花器官发生   总被引:1,自引:0,他引:1  
利用扫描电镜首次观察了天南星科花叶芋(Colocasia bicolor) 的花器官发生过程。花叶芋的肉穗花序由无花被的单性花构成, 雌花发生于花序基部, 雄花发生于花序上部, 中性花位于花序中间部位。雄花: 3 或4 个初生雄蕊原基轮状发生, 随后每个初生原基一分为二, 形成6或8个次生原基; 一部分次生原基在其后的发育过程中融合, 形成5 或7 枚雄蕊; 雄花发育过程中未见雌性结构的分化; 花药的分化先于花丝; 雄蕊合生成雄蕊柱。雌花: 合生心皮, 3或4个心皮原基轮状发生, 未见雄性结构的分化。中性花来源于雌雄花序过渡带上, 属于雄蕊原基的滞后发育以及发育成熟过程中的退化; 与彩叶芋属(Caladium)不同, 此过渡区未见畸形两性花。初生雄蕊原基二裂产生次生原基的次生现象在目前天南星科花器官发生中显得比较特殊, 同时初步探讨了次生原基的融合方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号