共查询到20条相似文献,搜索用时 0 毫秒
1.
Gerhard Wegener Nicholas M. Bolas André A. G. Thomas 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》1991,161(3):247-256
Flight metabolism of locusts has been extensively studied, but biochemical and physiological methods have led to conflicting results. For this reason the non-invasive and non-destructive method of 31P NMR spectroscopy was used to study migratory locusts, Locusta migratoria, at rest and during flight.
Dedicated to Professor Dr. Ernst Zebe (University of Münster) on occasion of his 65th birthday. 相似文献
1. | In the flight muscle of resting locusts the ratio of phosphoarginine to ATP was the same whether determined by NMR (1.76) or biochemically, but the NMR-visible content of inorganic phosphate (Pi) was only 40% of ATP, i.e., much lower than total Pi as determined biochemically. This suggests that most of the Pi in flight muscle is not free, and hence not available as substrate or effector for cytosolic enzymes. Similarly, the free content of ADP and AMP in resting muscle was calculated to be much lower than the total content. |
2. | Flight brought about a marked increase in Pi and a decrease in phosphoarginine in flight muscle although there was no change in intracellular pH. |
3. | At the initiation of flight a new steady state of ATP, Pi, and phosphoarginine was rapidly established and minimal changes occurred after the first 2 s of flight. |
4. | From the free contents of ATP and phosphoarginine in working flight muscle the flight-induced fractional increases in free ADP and free AMP were calculated to be 5.0-fold and 27.4-fold, respectively. As Pi, ADP, and AMP are substrates and potent effectors of enzymes, the flight-induced increase in their contents is likely to have marked effects on metabolic flux in working muscle. |
5. | After short-term flight as well as prolonged flight, phosphoarginine, ATP, and Pi returned rapidly to their preflight levels, indicating that metabolic recovery from flight is rapid. |
6. | The locust appears to be an appropriate model for the study of metabolic regulation in aerobic muscle during exercise. |
2.
3.
Carbon-13 and phosphorus-31 NMR study of hepatic metabolism in the perfused rat liver 总被引:1,自引:0,他引:1
P Canioni F Desmoulin J P Galons M Bernard E Fontanarava P J Cozzone 《Archives internationales de physiologie et de biochimie》1985,93(5):119-128
Phosphorus-31 nuclear magnetic resonance (NMR) has been used to determine non-invasively absolute concentrations of phosphorylated metabolites in the perfused rat liver. It has been shown that the NMR method does detect cytoplasmic ATP and ADP (ATP:ADP ratio of 15 +/- 3) with no contribution from mitochondrial adenine nucleotides. The concentration of ATP was 7.2 +/- 0.3 mM in the cytosol of well-oxygenated liver, after two hours of perfusion with a Krebs-Ringer buffer. Other phosphorylated metabolites were detected, mainly inorganic phosphate (1.1 mumol/g liver wet weight), phosphorylcholine (1.0 mumol/g wet weight), glycerophosphorylethanolamine (0.34 mumol/g wet weight) and glycerophosphorylcholine (0.30 mumol/g wet weight). The intracellular pH measured from the position of the Pi resonance has a value of 7.2 +/- 0.1. It is likely that the detectable Pi originates from the cytosolic compartment since a pH value of 7.4-7.6 would be expected for the mitochondrial matrix. Natural abundance carbon-13 NMR has also been used to follow the glycogen breakdown in situ by measuring the intensity of the glycogen C-1 resonance in the perfused liver spectrum as a function of the perfusion time. The glycogenolytic process has been studied as a function of the glucose content of the perfusate. Rate of glycogenolysis from 2.7 to 0.16 muEq glycosyl units g wet weight-1 min-1 were found when glucose concentration in the perfusate was varied from 0 to 50 mM. The fate of 90% enriched [2-13C] acetate has been studied in the perfused rat liver by 13C-NMR in order to investigate the mitochondrial metabolism and the interrelations between cytosolic and mitochondrial pools of metabolites. Some compounds of the intermediary metabolism where found to be extensively labelled, e.g. glutamate, glutamine, acetoacetate and beta-hydroxybutyrate. Under our experimental conditions, labelling of glutamate reached a steady-state within 30 min after the onset of perfusion of 20 mM acetate. In addition, the observed incorporation of carbon-13 isotope into glutamine can be linked to the operation of the glutamate-glutamine antiporter and to the high activity of the cytosolic glutamate synthetase. The finding of both active glutaminase and glutamine synthetase activity in the same liver cells is an evidence of the existence of an active glutamine-glutamate futile cycle. 相似文献
4.
Heterogeneity of metabolic response to muscular exercise in humans. New criteria of invariance defined by in vivo phosphorus-31 NMR spectroscopy 总被引:3,自引:0,他引:3
31P NMR spectroscopy at 4.7 T has been used in vivo to follow metabolic changes associated with exercise and subsequent recovery in the forearm flexor digitorum superficialis muscle of 14 healthy volunteers. The muscle content in phosphomonoesters at rest provides an index of glycogenolytic activity. Quantitative linear correlations have been shown to link end-of-exercise acidosis to recovery kinetics of phosphocreatine and phosphocreatine/organic phosphate ratio. These linear relationships constitute new metabolic invariants to be used in the study of myopathies and muscle adaptation to exercise. 相似文献
5.
P F Daly R C Lyon P J Faustino J S Cohen 《The Journal of biological chemistry》1987,262(31):14875-14878
Addition of choline, ethanolamine, or hemicholinium-3 (a choline kinase inhibitor) to the perfusate of human breast cancer cells monitored by 31P NMR spectroscopy resulted in significant changes to phosphomonoester (PME) and phosphodiester (PDE) signals. These results enable us to assign the PMEs to phosphcholine (PC) and phosphoethanolamine (PE), the PDEs to glycerophosphorylcholine and glycerophosphorylethanolamine, and to define the pathways producing them. The PMEs are products of choline and ethanolamine kinases, the first steps in phospholipid synthesis; and the PDEs are substrates of glycerophosphorylcholine phosphodiesterase, the last step in phospholipid catabolism. Furthermore, PC and PE peaks are twice as intense in cells at log phase versus confluency. We also observed these signals in vivo in human colon and breast tumors grown in mice. Since PMEs are low in most nonproliferating tissues, they could form a basis for noninvasive diagnosis. Also, PE and PC are situated between the control enzymes of two major synthetic pathways and will allow noninvasive 31P NMR studies of these pathways in intact cells and in vivo. 相似文献
6.
7.
Naumova AV Weiss RG Chacko VP 《American journal of physiology. Heart and circulatory physiology》2003,285(5):H1976-H1979
Image-guided, spatially localized 31P magnetic resonance spectroscopy (MRS) was used to study in vivo murine cardiac metabolism under resting and dobutamine-induced stress conditions. Intravenous dobutamine infusion (24 mug. min-1. kg body wt-1) increased the mean heart rate by approximately 39% from 482 +/- 46 per min at baseline to 669 +/- 77 per min in adult mice. The myocardial phosphocreatine (PCr)-to-ATP (PCr/ATP) ratio remained unchanged at 2.1 +/- 0.5 during dobutamine stress, compared with baseline conditions. Therefore, we conclude that a significant increase in heart rate does not result in a decline in the in vivo murine cardiac PCr/ATP ratio. These observations in very small mammals, viz., mice, at extremely high heart rates are consistent with studies in large animals demonstrating that global levels of high-energy phosphate metabolites do not regulate in vivo myocardial metabolism during physiologically relevant increases in cardiac work. 相似文献
8.
Phosphorus-31 nuclear magnetic resonance spectroscopy has been recently increasingly used to study cellular metabolism in a manner respecting the cell integrity. Intrinsic advantages of the phosphorus nucleus for in vivo NMR studies are discussed in this review together with some selected applications. A particular emphasis is layed on metabolite identification and quantitation (relative and absolute concentrations), the measurement of intracellular pH and the problem of cellular compartmentation. The determination of metabolite fluxes under normal and abnormal biological and physiological conditions, and the in vivo direct measurement by saturation transfer techniques of kinetic parameters for enzymatic reactions at equilibrium, are illustrated by several examples taken from the available literature and work carried out in this laboratory. Whenever possible, and appropriate, the NMR approach has been compared with other more classical techniques of investigation. The future and the potentialities of phosphorus-31 NMR study of intact biological systems, the clinical applications and the foreseeable interfacing with imaging techniques are evaluated. The concept of "functional imaging" versus "anatomic imaging" is proposed to illustrate the impact of this new technology in the understanding of cellular mechanisms, not only in the intact cell but also in whole tissues or organs after excision or in living animals and human. 相似文献
9.
J W Prichard 《The Yale journal of biology and medicine》1987,60(2):151-157
NMR spectroscopic methods have recently been developed for measurement of several concentrated cerebral metabolites in vivo. At present, 31P spectra from the brain permit detection of ATP, PCr, Pi, and certain sugar and lipid phosphates. The resonant frequency of Pi also provides a measure of cerebral pHi, and under some conditions ADP concentration can be calculated from information available in the 31P spectrum. The 1H spectrum of brain provides measurements of lactate, creatine, and several amino acids and choline-containing compounds. Both kinds of spectra can be obtained from the same subject. Our group at Yale used combined 31P and 1H methods to demonstrate that loss and recovery of phosphate energy stores and concomitant changes in cerebral amino acids during hypoglycemic coma in rodents could be observed in vivo. We then used the same methods to show that cerebral pHi can be normal while lactate is elevated in status epilepticus. NMR spectroscopy performed in vivo provides an array of chemically specific measurements unavailable by any other non-invasive method. It is thought to be entirely free of deleterious biological effects; hence, its potential for use in humans is considerable. 相似文献
10.
F Rabaste G Dauphin G Jeminet J Guyot A M Delort 《Biochemical and biophysical research communications》1991,181(1):74-79
Na+ movements in S. faecalis were studied by 23Na NMR. They proved to be dependent on phosphate concentration in the buffer during the de-energization step. K+ and H+ were also studied respectively by potentiometry and 31P NMR and were shown not to be implicated. For de-energized cells the internal phosphate concentration, on the contrary, was directly linked to the external phosphate contained in the buffer. The experiments showed a Na+/Pi dependence in this prokaryote so far known only in eukaryotes. 相似文献
11.
The intra-luminal acidic pH of endomembrane organelles is established by a proton pump, vacuolar H(+)-ATPase (V-ATPase), in combination with other ion transporter(s). The proton gradient (DeltapH) established in yeast vacuolar vesicles decreased and reached the lower value after the addition of alkaline cations including Na(+). As expected, the uptake of (22)Na(+) was coupled with DeltapH generated by V-ATPase. Disruption of NHX1 or NHA1, encoding known Na(+)/H(+) antiporters, did not result in the loss of (22)Na(+) uptake or the alkaline cation-dependent DeltapH decrease. Upon the addition of sulfate ions, the V-ATPase-dependent DeltapH in the vacuolar vesicles increased, but the membrane potential (DeltaPsi) decreased. Consistent with this observation, radioactive sulfate was transported into the vesicles with a K(m) value of 0.07 mM. The transport activity was unaffected upon disruption of the putative genes coding for homologues of plasma membrane sulfate transporters. These results indicate that the vacuoles exhibit unique Na(+)/H(+) antiport and sulfate transport, which regulate the luminal pH and ion homeostasis in yeast. 相似文献
12.
Rolf Altenburger Sibylle Abarzua Rainer Callies L. Horst Grimme Adalbert Mayer Dieter Leibfritz 《Archives of microbiology》1991,156(6):471-476
Cultures of the cyanobacterium Microcystis firma show rhythmic uptake and release of ammonia under conditions of carbon limitation. The massive removal of ammonia from the medium during the first light phase has little impact on the intracellular pH: a pH shift of less than 0.2 U towards the alkaline can be measured by in vivo 31P NMR. Furthermore, the energy status of the cells remains regulated. In vivo 15N NMR of M. firma, cultivated either with labelled nitrate or ammonia as the sole nitrogen source, reveals only gradual differences in the pool of free amino acids. Additionally both cultivation types show -aminobutyric acid, acid amides and yet unassigned secondary metabolites as nitrogen storing compounds. Investigating the incorporation of nitrogen under carbon limitation, however, only the amide nitrogen of glutamine is found permanently labelled in situ. While transamination reactions are blocked, nitrate reduction to ammonia can still proceed. Cation exchange processes in the cell wall are considered regarding the ammonia disappearance in the first phase, and the control of ammonia uptake is discussed with respect to the avoidance of intracellular toxification.Abbreviations GABA
-aminobutyric acid
- GOGAT
glutamate synthase
- GS
glutamine synthetase
- MDP
methylene diphosphonate
- MOPSO
3-(N-morpholino)-2-hydroxy-propanesulfonic acid
- NDPS
nucieoside diphosphosugars
- NOE
nuclear Overhauser effect
- NMR
nuclear magnetic resonance
For convenience, the term ammonia is used throughout to denote ammonia or ammonium ion when there is no good evidence as to which chemical species is involved 相似文献
13.
K Kato A Ohsaka K Matsushita K Yoshikawa 《Biochemical and biophysical research communications》1987,144(1):53-58
We now report a mouse model system of brain tumor for 31P-NMR spectroscopic study of in vivo cerebral metabolism. In vivo 31P-NMR (109 MHz) spectra were taken on the 9th day by the Faraday shield method of the brain of mice (3-week-old) transplanted intracerebrally with mKS X A tumor cells. In tumor-bearing mice, the amount of creatine phosphate decreased markedly and that of inorganic phosphate plus sugar phosphate increased accordingly. Furthermore, the broadening and splitting of individual signals were also noted with tumor-bearing mice; this is interpreted as indicating a variety of changes in chemical shift occurring in the brain of the animals due to heterogeneous distribution of pH. Binding or detaching of divalent cations to and from phosphometabolites may also be responsible for these changes. 相似文献
14.
In vivo NMR spectroscopy, together with selectively 13C-labelled substrates and 'statistical total correlation spectroscopy' analysis (STOCSY), are valuable tools to collect and interpret the metabolic responses of a living organism to external stimuli. In this study, we applied this approach to evaluate the effects of increasing concentration of exogenous ethanol on the Saccharomyces cerevisiae fermentative metabolism. We show that the STOCSY analysis correctly identifies the different types of correlations among the enriched metabolites involved in the fermentation, and that these correlations are quite stable even in presence of a stressing factor such as the exogenous ethanol. 相似文献
15.
S Iotti R Funicello P Zaniol B Barbiroli 《Biochemical and biophysical research communications》1991,176(3):1204-1209
31-Phosphorus magnetic resonance spectroscopy was used to investigate in vivo the kinetics of inorganic phosphate transport and intracellular pH after exercise in human skeletal muscle. Intracellular pH further decreased from the value reached at the end of work showing a minimum between 25 and 45 sec and then increased back to the resting value. Inorganic phosphate showed an initial fast rate of recovery corresponding to the decreasing phase of pH, and a second phase in which a slow rate of recovery corresponded to increasing pH. The biphasic patterns of both phosphate and pH recoveries are in agreement with and support in vitro evidence that Pi transport into mitochondria is modulated by pH. 相似文献
16.
17.
The metabolic alterations induced, in the isolated rat heart, by graded ischaemia and reperfusion, were evaluated both by 31P-NMR spectroscopy and by biochemical analysis. The relative changes in phosphorylated compound contents measured by both methods were well correlated for ATP (r = 0.94) and Pi (r = 0.88), but less for PC (r = 0.72). These results demonstrate that the data drawn from the 2 methods compare well, for the assessment of the effects of ischaemia on the isolated heart. In order to characterize the extent or energetic alterations caused by ischaemia and reperfusion from the data drawn from a single NMR spectrum various indices have been calculated. A simple index (Formula: see text) seems to this regard, as discriminative as the adenylate charge or the phosphorylation potential. 相似文献
18.
Reactions of cis-diamminedichloroplatinum(II) with phosphonoformic acid (PFA), phosphonoacetic acid (PAA), and methylenediphosphonic acid (MDP) yield various phosphonatoplatinum(II) chelates which were characterized by phosphorus-31 NMR spectroscopy. The P-31 resonances for the chelates appear at 6–12 ppm downfield as compared to the uncomplexed ligands. All complexes exhibit monoprotic acidic behavior in the pH range 2–10. The chemical shift-pH profiles yielded acidity constants, 1.0 × 10−4, 1.5 × 10−4, and 1.3 × 10−6 M−1, for the PFA, PAA, and MDP chelates. In addition to the monomeric chelate, MDP formed a bridged diplatinum(II,II) complex when it reacted with cis-Pt (NH3)2(H2O)22+. The P-31 resonance for this binuclear complex appears at 22 ppm downfield from the unreacted ligand.
Rate data for the complexation reactions of the phosphonate ligands with the dichloroplatinum complex are consistent with a mechanism in which a monodentate complex is formed initially through rate-limiting aquation process of the platinum complex, followed by a rapid chelation. For the PFA and PAA complexes, initial binding sites are the carboxylato oxygens. Implications of the various binding modes of the phosphonates in relationship to their antiviral activities are discussed. 相似文献
19.
Genetic evidence indicates that only the β-anomer of galactose is transported to Kluyveromyces lactis cells by galactose/glucose transporter Hgt1p, and that aldose-1-epimerase encoded by GAL10 is a prerequisite for growth on galactose. Minor aldose-1-epimerases other than Gal10p also exist in K.?lactis. Using a mutant defective in both aldose-1-epimerases, we show by solid-state nuclear magnetic resonance spectroscopy that only β-anomer is transported in the cell and stays without or with a slow rate of conversion to α-anomer. Signals due to intracellular β-galactose appeared at two positions, both of which were shifted towards higher magnetic fields than that of β-galactose in aqueous solution, suggesting that incorporated galactose binds to cellular components, probably proteins. 相似文献
20.
1. 31P NMR was used to characterize phosphate pools in perchloric acid extracts of muscles with various composition of muscle fibre types. 2. The white m. pectoralis major (MPM) of chickens 15 min post mortem is characterized by 1.6-times higher relative content of phosphocreatine (PCr) in comparison with mixed leg muscle (LM) of this species. The glycerophosphorylcholine (GPC) does not occur in MPM at NMR detectable level in contrast to the leg muscles. Relative amounts of other phosphates are similar in both muscles. 3. The intermediate MPM of pigeons as well as mixed LM of this species contain 15 min post mortem a very small amount of PCr and ATP but a large amount of inorganic phosphate. Relative content of GPC is higher in leg muscles than in intermediate MPM. 4. Muscles with higher occurrence of white fibres contain relatively more PCr than muscles with lower occurrence of white fibres. 5. The occurrence of GPC seems to be connected with metabolism of red muscle fibres. 相似文献