首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It has been established that the hydrogenase from autotrophically cultured Bradyrhizobium japonicum contains selenium as a bound constituent. About 80% of the enzyme selenium remains bound during precipitation with 5% trichloroacetic acid (TCA). However, 85% of the selenium bound to the enzyme is released by a combined treatment of urea, heat and TCA. Neither selenomethionine nor selenocysteine could be detected on analysis of anaerobically hydrolyzed enzyme. These results are consistent with the report showing that the structural genes for this enzyme do not contain a TGA codon (Sayavedra-Soto et al. 1988) which has been reported to code for selenocysteine incorporation into several proteins (Chambers et al. 1986; Zinoni et al. 1986; Stadtman 1987). We have demonstrated that 75Se from the labeled hydrolyzed enzyme forms the derivative' selenodicysteine. The form of selenium resulting in the synthesis of this derivative apparently is SeO inf3 sup= or a compound such as Se= which is easily oxidized to SeO inf3 sup= . In a separate approach it was established that 12–16% of the total 75Se in the native enzyme reacted with 2,3-diaminonaphthalene indicating that this fraction was present as SeO inf3 sup= . The remaining 75Se was bound to the enzyme protein. From this research, we concluded that Se in Bradyrhizobium japonicum hydrogenase is present in a labile bound form. In this respect, this enzyme is similar to xanthine dehydrogenase and nicotinic acid hydroxylase, both of which contain labile Se constituents that have not been defined.Technical paper no. 8980 from the Oregon Agricultural Experiment Station  相似文献   

2.
A rubredoxin-like mononuclear iron-sulfur derivative of adrenodoxin was prepared from the apoprotein and FeCl3 in the presence of dithiothreitol. The mononuclear compound displayed optical absorption maxima at 276, 350, and 500 nm, and exhibited electron paramagnetic resonance absorption at g = 4.27 with a shoulder at g = 4.28, which can be ascribed to high spin ferric ion. From p-chloromercuriphenyl sulfonate titration experiments the iron atom appears to contain approximately one g atom of iron per mole of protein. This rubredoxin-like derivative was very unstable at 22° (the half-life was approximately 10 minutes), whereas the native 2 Fe2S1 protein is known to be quite stable. This instability is believed to be intrinsic to the polypeptide sequence of adrenodoxin.  相似文献   

3.
Rapid oxidation processes relevant to the degradation of [4Fe4S] clusters in Clostridium pasteurianum ferredoxin were studied via direct (unmediated) heterogeneous electron transfer at a pyrolytic graphite electrode. Differential-pulse voltammograms of native [4Fe4S] ferredoxin showed two well-defined oxidation peaks corresponding to apparent E-values of +793 and +1120 mV at 5°C. Direct involvement of the cluster was established through parallel experiments with the 2[4Fe4Se] derivative for which peak positions were shifted. Square-wave voltammetry showed that the product of the first electron transfer, which may correspond to the ‘super-oxidised’ [4Fe4S]3+ oxidation level, undergoes rapid degradation (t12 < 1.6 ms at 5°C). The second oxidation process, as characterised by a significant (?100 mV) negative shift upon selenium substitution, very likely represents oxidation of S(Se) still associated with the protein and possibly contained within the remaining FES(Se) substructure.  相似文献   

4.
Study on the Relationship between Soil Selenium and Plant Selenium Uptake   总被引:13,自引:0,他引:13  
Various extraction methods have been used to determine selenium (Se) concentrations in soils and plants in the second seleniferous regions of China. Our results show tea Se contents in the study area range from 1.009 to 2.6 mg/kg, which reveal that the tea areas in Ziyang County are in seleniferous regions. The four extraction methods evaluated in this study provide different information concerning soil and plant Se levels. The quality control/quality assurance program for this project indicated there is excellent agreement between total soil Se and extractable Se. For example, phosphate extractable Se results from the field investigation and greenhouse study were found to be highly correlated (R 2 > 0.91) by linear regression analyses. Results from rye seedling experiments further show phosphate extractable Se has significant correlations with plant Se uptake and that a 0.1 M solution of KH2PO4 can be used as the extractant of soil available Se. In the acid soil, the Brassica campestris yield could be significantly reduced when the content of Se6+–Se ≥ 0.5 mg/kg, and the influence on the yield was not as obvious when the content of Se6+–Se reached up to 2.0 mg/kg. The uptake by Brassica campestris of Se6+–Se is higher than that of Se4+–Se. The main factors influencing the biological availability of soil Se, in order of their importance are CaCO3, the presence of silt grains, organic matter and the presence of clay grains. pH could affect KH2PO4 extractable Se through CaCO3.  相似文献   

5.
Raman spectra have been recorded for native and selenium substituted adrenodoxin in dilute solution. Adrenodoxin shows three bands at 397, 350 and 297 cm?1, all polarized, which can be associated with the iron-sulfur core. Selenium substitution leaves the 350 cm?1 band essentially unshifted, but the other two bands disappear and are replaced by new bands at 355 and 263 cm?1. The 350 cm?1 band is assigned to stretching of iron-sulfur (cysteine) bonds, while the 397 and 297 cm?1 bands are associated with vibrations of the labile sulfur atoms. The iron-selenium charge transfer bands were observed at 438 and 480 nm for the oxidized form and at 580 nm for the reduced form. The reduced selena-adrenodoxin displayed absorption maxima at 4, 450 and 5, 550 cm?1, which can be assigned to the d-d transitions of high-spin ferrous ion. From this data and the reported g-values of electron paramagnetic resonance signals, the spin-orbit coupling constants were calculated to be 170 and 210 cm?1 for the respective d-d transitions.  相似文献   

6.
Comparative cardiac ultrastructure, morphometry, and electrocardiography after dietary copper and selenium restriction were examined. Male weanling Long-Evans rats were fed diets that were either adequate in both copper and selenium (Cu+/Se+) or restricted in either Cu (Cu?) or Se (Se?) for 8 wk. At wk 8, electrocardiograms (ECG) anddP/dts were obtained and heart tissue was utilized for electron microscopy. Upon examination, Cu? rats were anemic, exhibited a greater heart: body weight ratio, and developed concentric hypertrophy characterized by an enhanced thickening of the left and right ventricular free walls, and interventricular septum. ECG recordings from lead aVF in the Cu? group showed a greater R wave amplitude in comparison to the Cu+/Se+ group. Se? rats recorded a greater left ventricular +dP/dt max than both the Cu+/Se+ and Cu? groups. Cardiac myofibril volume densities were decreased in both Cu? and Se? rats in comparison to the Cu+/Se+ rats. In addition Cu? rats showed a greater mitochondria: myofibril ratio. Sarcomere contractile protein disarray was present in both the Cu? and Se? groups. Se? myocytes also showed evidence of edema and mitochondrial fragmentation. The subcellular alterations suggest that similarities exist in the cardiac remodeling processes associated with copper and selenium restrictions.  相似文献   

7.
Selenium–sulfur solid solutions are a class of potential cathode materials for high energy batteries, since they have higher theoretical capacities than selenium and improved conductivity over sulfur. Here, a high‐performance cathode material by confining 70 wt% of SeS2 in a highly ordered mesoporous carbon (CMK‐3) framework with a polydopamine (PDA) protection sheath for novel Li–Se/S batteries is reported. With a relatively high SeS2 mass loading of 2.6–3 mg cm?2, the CMK‐3/SeS2@PDA cathode exhibits a high capacity of >1200 mA h g?1 at 0.2 A g?1, excellent C‐rate capability of 535 mA h g?1 at 5 A g?1, and prolonged life over 500 cycles. Benefitting from the unique advantages of SeS2 and the rationally designed host framework, this new cathode material demonstrates a feasible strategy to overcome the bottlenecks of current Li–S systems for high energy density rechargeable batteries.  相似文献   

8.
Sulfur, a key contributor to biological reactivity, is not amendable to investigations by biological NMR spectroscopy. To utilize selenium as a surrogate, we have developed a generally applicable 77Se isotopic enrichment method for heterologous proteins expressed in Escherichia coli. We demonstrate 77Se NMR spectroscopy of multiple selenocysteine and selenomethionine residues in the sulfhydryl oxidase augmenter of liver regeneration (ALR). The resonances of the active-site residues were assigned by comparing the NMR spectra of ALR bound to oxidized and reduced flavin adenine dinucleotide. An additional resonance appears only in the presence of the reducing agent and disappears readily upon exposure to air and subsequent reoxidation of the flavin. Hence, 77Se NMR spectroscopy can be used to report the local electronic environment of reactive and structural sulfur sites, as well as changes taking place in those locations during catalysis.  相似文献   

9.
Lithium–sulfur batteries are a promising high energy output solution for substitution of traditional lithium ion batteries. In recent times research in this field has stepped into the exploration of practical applications. However, their applications are impeded by cycling stability and short life‐span mainly due to the notorious polysulfide shuttle effect. In this work, a multifunctional sulfur host fabricated by grafting highly conductive Co3Se4 nanoparticles onto the surface of an N‐doped 3D carbon matrix to inhibit the polysulfide shuttle and improve the sulfur utilization is proposed. By regulating the carbon matrix and the Co3Se4 distribution, N‐CN‐750@Co3Se4‐0.1 m with abundant polar sites is experimentally and theoretically shown to be a good LiPSs absorbent and a sulfur conversion accelerator. The S/N‐CN‐750@Co3Se4‐0.1 m cathode shows excellent sulfur utilization, rate performance, and cyclic durability. A prolonged cycling test of the as‐fabricated S/N‐CN‐750@Co3Se4‐0.1 m cathode is carried out at 0.2 C for more than 5 months which delivers a high initial capacity of 1150.3 mAh g?1 and retains 531.0 mAh g?1 after 800 cycles with an ultralow capacity reduction of 0.067% per cycle, maintaining Coulombic efficiency of more than 99.3%. The reaction details are characterized and analyzed by ex situ measurements. This work highly emphasizes the potential capabilities of transition‐metal selenides in lithium–sulfur batteries.  相似文献   

10.
Irradiating the aqueous solution of SOD with 60Co γ-rays at 77 K and recording the ESR spectra during thermal annealing one observes, beside the signal of Cu++, the paramagnetic intermediate with g = 2.008 and g = 2.039. Because of its thermal stability, up to about 250 K, the formation of the complex ECu++…HO2 is suggested.  相似文献   

11.
The bioavailability of selenium (Se) was determined in bacterial strains that reduce selenite to red elemental Se (Seo). A laboratory strain ofBacillus subtilis and a bacterial rod isolated from soil in the vicinity of the Kesterson Reservoir, San Joaquin Valley, CA, (Microbacterium arborescens) were cultured in the presence of 1 mM sodium selenite (Na2SeO3). After harvest, the washed, lyophilizedB. subtilis andM. arborescens samples contained 2.62 and 4.23% total Se, respectively, which was shown to consist, within error, entirely of Seo. These preparations were fed to chicks as supplements to a low-Se, vitamin E-free diet. Three experiments showed that the Se in both bacteria had bioavailabilities of approx 2% that of selenite. A fourth experiment revealed that gray Seo had a bioavailability of 2% of selenite, but that the bioavailability of red Seo depended on the way it was prepared (by reduction of selenite). When glutathione was the reductant, bioavailability resembled that of gray Seo and bacterial Se; when ascorbate was the reductant, bioavailability was twice that level (3–4%). These findings suggest that aerobic bacteria such asB. subtilis andM. arborescens may be useful for the bioremediation of Se-contaminated sites, i.e., by converting selenite to a form of Se with very low bioavailability.  相似文献   

12.
A gram-negative, strictly anaerobic, motile vibrio was isolated from a selenate-respiring enrichment culture. The isolate, designated strain SES-3, grew by coupling the oxidation of lactate to acetate plus CO2 with the concomitant reduction of selenate to selenite or of nitrate to ammonium. No growth was observed on sulfate or selenite, but cell suspensions readily reduced selenite to elemental selenium (Se0). Hence, SES-3 can carry out a complete reduction of selenate to Se0. Washed cell suspensions of selenate-grown cells did not reduce nitrate, and nitrate-grown cells did not reduce selenate, indicating that these reductions are achieved by separate inducible enzyme systems. However, both nitrate-grown and selenate-grown cells have a constitutive ability to reduce selenite or nitrite. The oxidation of [14C]lactate to 14CO2 coupled to the reduction of selenate or nitrate by cell suspensions was inhibited by CCCP (carbonyl cyanide m-chlorophenylhydrazone), cyanide, and azide. High concentrations of selenite (5 mM) were readily reduced to Se0 by selenate-grown cells, but selenite appeared to block the synthesis of pyruvate dehydrogenase. Tracer experiments with [75Se]selenite indicated that cell suspensions could achieve a rapid and quantitative reduction of selenite to Se0. This reduction was totally inhibited by sulfite, partially inhibited by selenate or nitrite, but unaffected by sulfate or nitrate. Cell suspensions could reduce thiosulfate, but not sulfite, to sulfide. These results suggest that reduction of selenite to Se0 may proceed, in part, by some of the components of a dissimilatory system for sulfur oxyanions.  相似文献   

13.
Certain yeast cells on solid nutrient medium produced colonies surrounded by a light zone of selenite absorption. This screening procedure resulted in the selection of 22 strains out of 200 isolates with different Se4+-absorbing capacity ranging from 16 to 98.8 g Se4+ g–1 l–1 h–1. The highest rate of Se4+ elimination from the Na2SeO3 solution was observed with an oval shaped, cream pigmented fermentative yeast, tentatively called Candida sp. strain MS4. This strain was isolated from wastewater and found to accumulate selenium oxyanions. Se4+ uptake involved both inactive and active phenomena. The amounts of selenium (initial concentration 2 mg Se4+ l–1) removed from aqueous solution by inactive and active phenomena were 667 g Se4+ g–1 l–1, and 1580 g Se4+ g–1 l–1, respectively. The strain also removed selenate inactively (135 g Se6+ g–1 l–1).  相似文献   

14.
There is a U-shaped dose-response between selenium (Se) status and health outcomes, but underlying metabolic processes are unclear. This study aims to identify candidate proteins in liver regulated by dietary Se, ranging from deficiency to toxic. Male rats (n=4) were fed graded Se concentrations as selenite for 28 days. Bulk Se analysis was performed by ICP-MS on both soluble and insoluble fractions. Soluble fraction samples were chromatographically separated for identification of selenocompounds by SEC-ICP-MS and protein quantification by LC-MS/MS. Bioinformatics analysis compared low-Se (0 and 0.08 µg Se g−1) and high-Se (0.8, 2 and 5 µg Se g−1) with adequate-Se (0.24 µg Se g−1) diets. Major breakpoints for Se were seen at 0.8 and 2 µg Se g−1 in the insoluble and soluble fractions, respectively. Glutathione peroxidase 1 protein abundance reached a plateau at ≥0.08 µg Se g−1diet; Se bound to selenium binding protein 2 was observed with 2 and 5 µg Se g−1 Se. The extreme diets presented the highest number of differentially expressed (P value <0.05, FC ≥1.2) proteins in comparison to the adequate-Se diet (0 µg Se g−1: 45 proteins; 5 µg Se g−1: 59 proteins); 13 proteins were commonly affected in 0 and 5 µg Se g−1 treatments. Network analysis revealed that the metabolism of glutathione, xenobiotics and amino acids were enriched in both 0 and 5 µg Se g−1 diets, indicating a U-shape effect of Se. This similarity is likely due to down-stream effects of lack of essential selenoproteins in Se deficiency and due to toxic effects of Se that exceeds the capacity to cope with excess Se.  相似文献   

15.
16.
1. The incorporation of 75Se from Na275SeO3 into the liver endoplasmic reticulum of rats given phenobarbitone was investigated by using a zonal centrifuge technique. 2. It was found that, in rats deprived of vitamin E, or of vitamin E and selenium, phenobarbitone was without effect on the incorporation of 75Se or on its conversion to 75Se2−. When vitamin E was given at the same time as the phenobarbitone and 75Se, there was a large increase in the amount of 75Se and 75Se2− found in the smooth reticulum. It is concluded that there may be a specific vitamin E-dependent role for selenium and selenide in the smooth endoplasmic reticulum, and it is suggested, in the light of these and other observations, that the selenide may form a part of the active centre of a non-haem iron-containing protein `X', that may function in microsomal electron transport. 3. Measurements of the contents of cytochromes P-450 and b5 in liver microsomal fractions of rats given vitamin E-deficient, and vitamin E- and selenium-deficient diets, showed that haemoprotein biosynthesis is unimpaired in these rats and phenobarbitone treatment resulted in the expected increase in the haemoproteins. 4. When the reduction of cytochrome P-450 by NADH and NADPH was measured, no difference was found between normal and deficient animals. 5. These results are discussed in relation to current knowledge of microsomal electron transfer.  相似文献   

17.
Selenium (Se) is a metalloid that can occur naturally in soils from the Cretaceous shale deposits of a prehistoric inland sea in the western United States. Agricultural irrigation and runoff solubilizes Se from these shales, causing buildups of toxic levels of selenate (SeO42−) in water and soil. Our main objective was to investigate the accumulation of Se in two Brassicaceae species chosen for their potential as phytoremediators of Se contaminated soils. We tested the hypothesis that Se will accumulate in the pollen and nectar of two plant species and negatively affect floral traits and plant reproduction. Certain species of Brassicaceae can accumulate high concentrations of Se in their leaf tissues. In this study Se accumulation in plant tissues was investigated under greenhouse conditions. Se accumulator (Brassica juncea) and Se hyperaccumulator (Stanleya pinnata) plants were irrigated in sand culture with 0 μM selenate (control), 8 μM selenate, and 13 μM selenate.Nectar and pollen in S. pinnata contained up to 150 μg Se mL−1 wet weight and 12900 μg Se g−1 dry weight when irrigated with 8 μM selenate. Se levels in nectar (110 μg Se mL−1 wet weight) and pollen (1700 μg Se g−1 dry weight) were not as high in B. juncea. Floral display width, petal area and seed pod length were significantly reduced in the 13 μM selenate Se treatment in B. juncea. S. pinnata floral traits and seeds were unaffected by the Se treatments.This study provides crucial information about where some of the highest concentrations of Se are found in two phytoremediators, and may shed light on the potential risks pollinators may face when foraging upon these accumulating plants. In the field, duration of the plant's exposure, Se soil and water concentrations as well as other environmental factors may also play important roles in determining how much Se is accumulated into the leaf and floral tissues. Our greenhouse study shed light on two species’ ability to accumulate Se, as well as determined the specific plant tissues where Se concentrations are highest.  相似文献   

18.
The measurement of elemental selenium (Se0) is needed to assess the rate and magnitude of bacteria reduction of selenite or selenate. We have developed a spectrophotometric method for the measurement Se0 that is rapid and can be employed to measure the quantity of Se0 produced by bacterial cultures. This method employs the use of 1 M Na2S to convert the insoluble elemental selenium to a red-brown solution and with this method there is a direct correlation between concentration of elemental selenium and the absorption at 500 nm. To demonstrate the utility of this assay, we have followed the reduction of selenite to Se0 by Moraxella bovis, and by bacterial consortia in soil and water samples.  相似文献   

19.
In this work, we report on a relationship between urinary selenium and the development of cervical uterine cancer. A simple chemical method was developed to concentrate trace amounts of selenium from relatively large urine samples by use of small activated carbon filters. When these filters are irradiated with thermal neutrons, selenium can be determined either by 77mSe (t 1/2=17.5 s) or 75Se (t 1/2=120 d). In this article, we report the results for 82 urine samples from women with cervical uterine cancer in several stages of development and from healthy controls. These results show a statistically significant increase of selenium excretion in cancer patients as compared to controls. Urinary selenium excretion is highest for patients in the intermediate stages of the disease.  相似文献   

20.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号