首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. A. Pyke  R. M. Leech 《Planta》1987,170(3):416-420
Chloroplast number per cell and mesophyll cell plan area were determined in populations of separated cells from the primary leaves of different wheat species representing three levels of ploidy. Mean chloroplast number per cell increases with ploidy level as mean cell size increases. But in addition the analysis of individual cells clearly shows that cells of a similar size but from species of different ploidies have similar numbers of chloroplasts. We conclude that the number of chloroplasts within a cell is closely correlated (P<0.001) with the size of the cell and this relationship is consistent for species of different ploidies over a wide range of cell sizes. These results are discussed in relation to the hypothesis that chloroplast number in leaf mesophyll cells is determined by the size of the cell.  相似文献   

2.
During development of the first leaf of breadwheat (Triticum aestivum L.) the number of chloroplasts per mesophyll cell increases between three- and four-fold. To establish if chloroplast replication is accompanied by endoreduplication, the nuclear DNA content of the cells was determined by chemical assay of isolated nuclei from mesophyll protoplasts and by microdensitometry of nuclei in mesophyll tissue. The DNA content of the nuclei was constant (27 to 32 pg) at each phase of chloroplast replication. Approximately 93% of the cells had a nuclear DNA content close to the 2C value of 32 pg. It is concluded that chloroplast replication is not dependent on nuclear endoreduplication in seedling leaves of wheat.  相似文献   

3.
Summary. To understand the regulatory mechanisms of chloroplast proliferation, chloroplast replication was studied in cultured leaf disks cut from plants of 25 species. In leaf disks from Brassica rapa var. perviridis, the number of chloroplasts per cell increased remarkably in culture. We examined chloroplast replication in this plant in vivo and in culture media with and without benzyladenine, a cytokinin. In whole plants, leaf cells undergo two phases from leaf emergence to full expansion: an early proliferative stage, in which mitosis occurs, and a differentiational stage after mitosis has diminished. During the proliferative stage, chloroplast replication keeps pace with cell division. In the differentiational phase, cell division ceases but chloroplast replication continues for two or three more cycles, with the number of chloroplasts per cell reaching about 60. In the leaf disks, the number of chloroplasts per cell increased from about 18 to 300 without benzyladenine, and to over 600 with benzyladenine, indicating that this cytokinin enhances chloroplast replication in cultured tissue. We also studied changes in ploidy and cell volume between in vivo cells and cells grown in culture with and without benzyladenine. Ploidy and cell volume increased in a manner very similar to that of the number of chloroplasts, suggesting a relationship between these phenomena.Correspondence and reprints: Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.  相似文献   

4.
Pyke, K. A. and Leech, R. M. 1987. Cellular levels of ribulose1,5 bisphosphate carboxylase and chloroplast compartment sizein wheat mesophyll cells.—J. exp. Bot. 38: 1949–1956. The amount of the photosynthetic enzyme ribulose 1,5 bisphosphatecarboxylase (RUBISCO),as determined in mesophyll cells in primarywheat leaves was related to the size of the chloroplast compartmentwithin the cell for wheat species of three ploidy levels. Asimilar comparison was made for several genotypes of the hexaploidbreadwheat Triticum aestivum. Estimation of total chloroplastvolume per mesophyll cell was made assuming chloroplasts tobe oblate spheroid in shape. A significant correlation was found between the amount of RUBISCOper cell and the total chloroplast volume per cell for diploid,tetraploid and hexaploid wheat species. A significant correlationbetween cellular RUBISCO level and total chloroplast volumeper cell was also observed for a range of genotypes of the hexaploidT. aestivum but these genotypes of T. aestivutn accumulate agreater amount of RUBISCO per unit chloroplast volume than doany other wheat species. For these genotypes of T. aestivumthe stromal concentration of RUBISCO was estimated at 0·5mol m–3 with a ribulose Msphosphate binding site concentrationof 4·0 mol m–3. These results are discussed with respect to a gene dosage hypothesisto explain the accumulation of RUBISCO in leaf mesophyll cells. Key words: Ribulose, bisphosphate carboxylase, wheat chloroplasts, mesophyll cells  相似文献   

5.
Changes in chloroplast number during pea leaf development   总被引:3,自引:0,他引:3  
Protoplasts were prepared from pea (Pisum sativum L.) leaves throughout development and their contents spread in a monolayer to determine the number of chloroplasts per cell. This approach permitted the rapid analysis of more than 100 cells at each stage of development. The average number of chloroplasts per cell increased from 24±10 to 64±20 during greening and expansion of the first true foliage leaves; all cells containing chloroplasts apparently increase their chloroplast number. A parallel increase in the amount of DNA per nucleus was not observed. As the leaves senesced the chloroplast number gradually decreased to 44±12. We have correlated these changes with our previous results on the percentage of chloroplast DNA per cell. Chloroplast multiplication resulted in a 2.7-fold dilution (from 272 to 102) of the number of copies of the chloroplast DNA molecule per plastid.  相似文献   

6.
J. V. Possingham  W. Saurer 《Planta》1969,86(2):186-194
Summary The amounts of chlorophyll and nitrogen and the numbers of cells per unit area change as the green leaves of spinach plants grow and increase in size in the light. The changes in the numbers of chloroplasts per cell were measured by a new method. A 5-fold increase in the numbers of chloroplasts per cell took place in both palisade and mesophyll cells over a growing period of 10 days during which time the area of the leaves increased from 1 to 50 cm2. Proplastids were not present in the young green leaves but electron-microscope and phase-contrast observations showed the presence of grana-containing chloroplasts, many of which appeared to be undergoing division by constriction. It is suggested that the large increase in chloroplast numbers as leaf cells grow and expand in the light is from the division of differentiated chloroplasts containing grana.  相似文献   

7.
Summary Some factors affecting the chloroplast replication were studied using the leaf cells of the mossPlagiomnium trichomanes. There was a significant positive correlation between chloroplast number per cell and cell volume in leaves of any developmental stage. However, when the detached leaves were cultured on nutrient agar, it was observed that the chloroplast replication occurred without cell enlargement regardless of the developmental stage of leaves. This implies that cell enlargement is not an essential factor for the chloroplast replication, but one of the environmental factors affecting it. Light is essential for the chloroplast replication which response to the light intensity. In the dark, there was little increase in chloroplast number per cell. With a light intensity of 50 lux, the increase rate of chloroplast number per cell was about half of that with 3,000 lux. Day length also affected significantly the chloroplast replication.  相似文献   

8.
Summary The size ranges of chloroplasts in living mesophyll cells of Spinacia oleracea, Allium cepa, Beta vulgaris (Swiss chard and red beet) and Nicotiana glutinosa are extremely wide, e.g., ranging from about 6 µ2 to 103 µ2 in face area for spinach. Moreover, the size distributions are positively skewed. We interpret the size range and skewed size distributions primarily to reflect an enormous growth of the bulk of the chloroplasts from small, equal-sized chloroplasts produced by fission of a small sub-population of constricted mature chloroplasts. While actual fission has never been observed, a slow division rate of the constricted chloroplasts in N. glutinosa can account for the increase in chloroplast numbers per cell during leaf development and for the presence of small, non-constricted chloroplasts after the small chloroplasts which developed during the initial meristem activity have enlarged. Chloroplast numbers and total amount of chloroplast material per cell face were positively correlated with mesophyll-cell face size. However, the fraction of the cell face occupied with chloroplasts was essentially constant and independent of cell size and cell age while being markedly different for different species of plants. There appear to be some family characteristics in that closely related species have similar size-distributions and ranges of chloroplast sizes. The observations are discussed with respect to the ontogeny of chloroplasts in higher plants.  相似文献   

9.
Variation in Mesophyll Cell Number and Size in Wheat Leaves   总被引:1,自引:0,他引:1  
The numbers of mesophyll cells in wheat leaves were determinedin a variety of wheat species differing in ploidy level andin leaves from different positions on the wheat plant. Leafsize and mesophyll cell number are linearly related in bothcases but differences were observed in mesophyll cell numberper unit leaf area with changing leaf size. Where changes incell size are caused either by nuclear ploidy or leaf position,differences in mesophyll cell number per unit leaf are negativelycorrelated with mesophyll cell plan area. The decrease in cellsize with increasing leaf position also results in a greaternumber of chloroplasts per unit leaf area. These results arediscussed in relation to anatomical variation of the wheat leaf. Mesophyll cell, cell numbers, leaf size, Triticum  相似文献   

10.
C. M. Bowman 《Planta》1986,167(2):264-274
The possibility of estimating the proportion of chloroplast DNA (ctDNA) and nuclear DNA (nDNA) in nucleic-acid extracts by selective digestion with the methylation-sensitive restriction enzyme PstI, was tested using leaf extracts from Spinacia oleracea and Triticum aestivum. Values of ctDNA as percentage nDNA were estimated to be 14.58%±0.56 (SE) in S. oleracea leaves and 4.97%±0.36 (SE) in T. aestivum leaves. These estimates agree well with those already reported for the same type of leaf material. Selective digestion and quantitative dot-blot hybridisation were used to determine ctDNA as percentage nDNA in expanded leaf tissue from species of Triticum and Aegilops representing three levels of nuclear ploidy and six types of cytoplasm. No significant differences in leaf ctDNA content were detected: in the diploids the leaf ctDNA percentage ranged between 3.8% and 5.1%, and in the polyploids between 3.5% and 4.9%. Consequently, nuclear ploidy and nDNA amount were proportional to ctDNA amount (r(19)=0.935, P>0.01) and hence to ctDNA copy number in the mature mesophyll cells of these species. There was a slight increase in ctDNA copy numbers per chloroplast at higher ploidy levels. The balance between numbers of nuclear and chloroplast genomes is discussed in relation to polyploidisation and to the nuclear control of ctDNA replication.Abbreviations ctDNA chloroplast DNA - nDNA nuclear DNA - RuBPCase ribulose-1,5-bisphosphate carboxylase - DAPI 4,6-diamidine-2-phenylindole  相似文献   

11.
Changes in the structural characteristics of mesophyll induced by shading were investigated in ten species of wild plants of diverse functional types. In all plant types, shading reduced leaf thickness and density by 30–50% and total surface of mesophyll, by 30–70%. The extent and mechanisms of mesophyll structural rearrangement depended on the plant functional type. In the ruderal plants, integral parameters of mesophyll, such as the surface of cells and chloroplasts and mesophyll resistance, changed threefold predominantly because of changes in the dimensions of the cells and chloroplasts. In these plants, shading reduced the volume of chloroplasts by 30%, and the chloroplast numbers per cell declined. The competitor plants showed a twofold increase in mesophyll resistance due to a decrease in the number of photosynthesizing cells per leaf area unit. Moreover, these plants maintained constant dimensions of mesophyll cells, ratios mesophyll surface/mesophyll volume and chloroplast surface/cell surface. In stress-tolerant plants, diffusion resistance of mesophyll remained the same irrespective of the growing conditions, and mesophyll rearrangement was associated with inversely proportional changes in the dimensions of the cells and cell volume per chloroplast. Noteworthy of these plants were relatively constant chloroplasts number per cell, per leaf area unit and total surface area of chloroplasts. The nature of relationship between the mesophyll diffusion resistance and structural parameters of leaf mesophyll differed in plants of diverse functional types.  相似文献   

12.
Changes in the number and composition of chloroplasts of mesophyll cells were followed during senescence of the primary leaf of wheat (Triticum aestivum L.). Senescence was due to the natural pattern of leaf ontogeny or was either induced by leaf detachment and incubation in darkness, or incubation of attached leaves in the dark. In each case discrete sections (1 centimeter) of the leaf, representing mesophyll cells of the basal, middle, and tip regions, were examined. For all treatments, senescence was characterized by a loss of chlorophyll and the protein ribulose 1,5-bisphosphate carboxylase (RuBPCase). Chloroplast number per mesophyll cell remained essentially constant during senescence. It was not until more than 80% of the plastid chlorophyll and RuBPCase was degraded that some reduction (22%) in chloroplast number per mesophyll cell was recorded and this was invariably in the mesophyll cells of the leaf tip. We conclude that these data are consistent with the idea that degradation occurs within the chloroplast and that all chloroplasts in a mesophyll cell senesce with a high degree of synchrony rather than each chloroplast senescing sequentially.  相似文献   

13.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

14.
The Structure of the Mesophyll of Flag Leaves in Three Triticum Species   总被引:1,自引:0,他引:1  
Flag leaves of Triticum urartu, T. monococcum and T. aestivumcv. Professeur Marchal were examined by light and electron microscopyand by separating cells to determine whether differences inleaf anatomy could be related to known differences in theirlight-saturated rates of photosynthesis. Mesophyll cells fromthe three species were lobed and orientated with their longaxis parallel to the veins. The longest, most-lobed cells flankedthe sclerenchyma associated with the veins. Mean cell dimensionswere greatest in Professeur Marchal, but there was no significantdifference in the ratio of the mesophyll cell surface area tocell volume amongst the three species. Flag leaves of T. urartushowed the highest rates of photosynthesis and were also thethickest, with closely-spaced veins from which many of the mesophyllcells radiated. These flag leaves also had significantly more(21.9 per cent) air-filled space, and the highest ratio (15.2)of mesophyll cell surface exposed to this air-filled space perunit leaf area. Ways in which these anatomical characteristicsmay contribute to the higher rate of photosynthesis are discussed. Triticum urartu, Triticum monococcum, Triticum aestivum, flag leaves, morphology, mesophyll  相似文献   

15.
Structural Adaptation of the Leaf Mesophyll to Shading   总被引:1,自引:0,他引:1  
Structural characteristics of the mesophyll were studied in five boreal grass species experiencing a wide range of light and water supply conditions. Quantitative indices of the palisade and spongy mesophyll tissues (cell and chloroplast sizes, the number of chloroplasts per cell, the total cell and chloroplast surface area per unit leaf surface area) were determined in leaves of each of the species. The cell surface area and the cell volume in spongy mesophyll were determined with a novel method based on stereological analysis of cell projections. An important role of spongy parenchyma in the photosynthetic apparatus was demonstrated. In leaves of the species studied, the spongy parenchyma constituted about 50% of the total volume and 40% of the total surface area of mesophyll cells. The proportion of the palisade to spongy mesophyll tissues varied with plant species and growth conditions. In a xerophyte Genista tinctoria, the total cell volume, cell abundance, and the total surface area of cells and chloroplasts were 30–40% larger in the palisade than in the spongy mesophyll. In contrast, in a shade-loving species Veronica chamaedris, the spongy mesophyll was 1.5–2 times more developed than the palisade mesophyll. In mesophyte species grown under high light conditions, the cell abundance and the total cell surface area were 10–20% greater in the palisade mesophyll than in the spongy parenchyma. In shaded habitats, these indices were similar in the palisade and spongy mesophyll or were 10–20% lower in the palisade mesophyll. In mesophytes, CO2 conductance of the spongy mesophyll accounted for about 50% of the total mesophyll conductance, as calculated from the structural characteristics, with the mesophyll CO2 conductance increasing with leaf shading.  相似文献   

16.
Seedlings of Citrus volkameriana (L.) were grown hydroponically for 43 days in order to study the effect of Mn concentration (0, 2, 14, 98 and 686 microM) in the nutrient solution on leaf anatomy and mesophyll chloroplast ultrastructure. Increasing Mn concentration stimulated leaf lamina thickness. The size of mesophyll chloroplasts decreased and increased under 0 and 686 microM Mn, respectively, compared to the intermediate Mn concentrations, similar with regard to the number of chloroplasts per mesophyll cell area. Thylakoid membranes of plants grown under 0 microM Mn were somewhat swelled, while those in other Mn treatments did not present any visible malformation. The relative volume of starch grains per chloroplast was significantly smaller under 0-98 microM Mn (12.8-16.0%) than in the treatment with 686 microM Mn (67.6%). Further, under 686 microM Mn, dark deposits were found in vacuoles. The existence of a cell adaptation mechanism to excessive Mn availability (686 microM Mn) by increasing the size of chloroplasts as well as their number per cellular area, is discussed.  相似文献   

17.
The size, shape, and number of chloroplasts in the palisade and spongy parenchyma layers of Haberlea rhodopensis leaves changed significantly during desiccation and following rehydration. The chloroplasts became smaller and more rounded during desiccation, and aggregated in the middle of the cell. The size and number of chloroplasts in the palisade parenchyma cells were higher than in spongy parenchyma. The good correlation observed between the size or number of chloroplasts and the cross-sectional area of mesophyll cells, the cross-sectional width of the leaf and its water content suggested that the palisade cells were more responsive to water availability than the spongy cells. Changes in chloroplast number during desiccation and rehydration process are characteristic features for desiccation-tolerant plants (especially in homoiochlorophyllous strategy).  相似文献   

18.
Growth and mesostructure of the photosynthetic apparatus were studied in leaves of ten Triticum L. species. Plants with the Au genome were shown to develop larger leaf assimilation areas due to expanding areas of individual leaves and an increase in the absolute growth rate. Leaf and mesophyll thickness and mesophyll cell size decreased in the G-genome species. Leaf compactness, which depended on cell size and number per unit leaf area and leaf folding, determined the specific patterns of internal leaf organization in wheat species with diverse genotypes. These patterns did not affect cell plastid-to-cytoplasm ratio as shown by the stable indices of cell surface area/cell volume, cell surface area per chloroplast, and cell volume per chloroplast. The structural indices of leaf phototrophic tissues, mesophyll density, and mesophyll CO2 conductance in alloploids, as compared to diploid species, depended on both ploidy and genome constitution.  相似文献   

19.
J. C. Hawke  R. M. Leech 《Planta》1990,181(4):543-546
The cellular amounts and cellular activities of acetyl CoA carboxylase (ACC; EC 6.4.1.2.) were determined in the first leaves of diploid, tetraploid and hexaploid species of Triticum (wheat). Per leaf the ACC activities were very similar in T. monococcum (2 ), T. dicoccum (4 ) and T. aestivum (6 ). The ACC activity per chloroplast also showed little variation between species of different ploidy but since chloroplast number increases with ploidy, the ACC activities and ACC amounts per cell also increased with ploidy. These cellular increases in ACC amounts associated with increases in gene dosage were highly co-ordinated in the diploids T. monococcum and T. tauschii and their respective autotetraploids so the specific activity of ACC was highly conserved in these plants. The relevance of these findings to attempts to genetically manipulate lipid biosynthesis in chloroplasts is discussed.Abbreviation ACC acetyl CoA carboxylase We are very grateful to Dr. Kevin Pyke and Miss Jo Marrison for many helpful discussions and to Dr. Collin Law for the generous gift of seeds.  相似文献   

20.
We have used a class of Arabidopsis mutants altered in the accumulation and replication of chloroplasts (arc mutants) to investigate the effect of reduced chloroplast number on the photosynthetic competence of leaves. Each of the arc mutants examined (arc3, arc5, and arc6) accumulate only a few (2–15) large chloroplasts per mesophyll cell [K.A. Pyke and R.M. Leech (1992) Plant Physiology 99: 1005–1008]. The increased plastid size maintains a constant plastid to mesophyll cell volume, which has been suggested to compensate for the lower chloroplast number. In fact, we find that reduced chloroplast number has an effect on both the composition and structure of the photosynthetic apparatus, and that each arc mutant has an altered photosynthetic capacity, and we conclude that photosynthetic competence is dependent on proper chloroplast division and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号