首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Among bacterial protein toxins, the cytolethal distending toxins (CDTs) are unique in their ability to activate the DNA damage checkpoint responses, causing cell cycle arrest or apoptosis in intoxicated cells. We provide direct evidence that natural intoxication of cells with the Haemophilus ducreyi CDT (HdCDT) holotoxin induces DNA double-strand breaks similarly to ionizing radiation. Upon DNA damage, epithelial cells and fibroblasts promote the formation of actin stress fibres via activation of the small GTPase RhoA. This phenomenon is not toxin specific, but is part of the ATM-induced cellular responses to genotoxic stresses, including ionizing radiation. Activation of RhoA is associated with prolonged cell survival, as HdCDT-treated epithelial cells expressing a dominant-negative form of RhoA detach and consequently die faster than cells expressing a functional RhoA. Our data highlight several novel aspects of CDT biology: (i) we show that a member of the CDT family causes DNA double-strand breaks in naturally intoxicated cells, acting as a true genotoxic agent; and (ii) we disclose the existence of a novel signalling pathway for intracellularly triggered activation of the RhoA GTPase via the ATM kinase in response to DNA damage, possibly required to prolong cell survival.  相似文献   

2.
In response to DNA damage, mammalian cells adopt checkpoint regulation, by phosphorylation and stabilization of p53, to delay cell cycle progression. However, most cancer cells that lack functional p53 retain an unknown checkpoint mechanism(s) by which cells are arrested at the G(2)/M phase. Here we demonstrate that a human homolog of Cds1/Rad53 kinase (hCds1) is rapidly phosphorylated and activated in response to DNA damage not only in normal cells but in cancer cells lacking functional p53. A survey of various cancer cell lines revealed that the expression level of hCds1 mRNA is inversely related to the presence of functional p53. In addition, transfection of normal human fibroblasts with SV40 T antigen or human papilloma viruses E6 or E7 causes a marked induction of hCds1 mRNA, and the introduction of functional p53 into SV40 T antigen- and E6-, but not E7-, transfected cells decreases the hCds1 level, suggesting that p53 negatively regulates the expression of hCds1. In cells without functional ataxia telangiectasia mutated (ATM) protein, phosphorylation and activation of hCds1 were observed in response to DNA damage induced by UV but not by ionizing irradiation. These results suggest that hCds1 is activated through an ATM-dependent as well as -independent pathway and that it may complement the function of p53 in DNA damage checkpoints in mammalian cells.  相似文献   

3.
Caffeine and human DNA metabolism: the magic and the mystery   总被引:7,自引:0,他引:7  
The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21(Cip1/Waf1) post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase eta, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol eta protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.  相似文献   

4.
Targeting DNA repair with poly(ADP-ribose) polymerase (PARP) inhibitors has shown a broad range of anti-tumor activity in patients with advanced malignancies with and without BRCA deficiency. It remains unclear what role p53 plays in response to PARP inhibition in BRCA-proficient cancer cells treated with DNA damaging agents. Using gene expression microarray analysis, we find that DNA damage response (DDR) pathways elicited by veliparib (ABT-888), a PARP inhibitor, plus topotecan comprise the G1/S checkpoint, ATM, and p53 signaling pathways in p53-wildtype cancer cell lines and BRCA1, BRCA2 and ATR pathway in p53-mutant lines. In contrast, topotecan alone induces the G1/S checkpoint pathway in p53-wildtype lines and not in p53-mutant cells. These responses are coupled with G2/G1 checkpoint effectors p21CDKN1A upregulation, and Chk1 and Chk2 activation. The drug combination enhances G2 cell cycle arrest, apoptosis and a marked increase in cell death relative to topotecan alone in p53-wildtype and p53-mutant or -null cells. We also show that the checkpoint kinase inhibitor UCN-01 abolishes the G2 arrest induced by the veliparib and topotecan combination and further increases cell death in both p53-wildtype and -mutant cells. Collectively, PARP inhibition by veliparib enhances DDR and cell death in BRCA-proficient cancer cells in a p53-dependent and -independent fashion. Abrogating the cell-cycle arrest induced by PARP inhibition plus chemotherapeutics may be a strategy in the treatment of BRCA-proficient cancer.  相似文献   

5.
Cellular senescence can be triggered by telomere shortening as well as a variety of stresses and signaling imbalances. We used multiparameter single-cell detection methods to investigate upstream signaling pathways and ensuing cell cycle checkpoint responses in human fibroblasts. Telomeric foci containing multiple DNA damage response factors were assembled in a subset of senescent cells and signaled through ATM to p53, upregulating p21 and causing G1 phase arrest. Inhibition of ATM expression or activity resulted in cell cycle reentry, indicating that stable arrest requires continuous signaling. ATR kinase appears to play a minor role in normal cells but in the absence of ATM elicited a delayed G2 phase arrest. These pathways do not affect expression of p16, which was upregulated in a telomere- and DNA damage-independent manner in a subset of cells. Distinct senescence programs can thus progress in parallel, resulting in mosaic cultures as well as individual cells responding to multiple signals.  相似文献   

6.
Previous studies have shown that hyperoxia inhibits proliferation and increases the expression of the tumor suppressor p53 and its downstream target, the cyclin-dependent kinase inhibitor p21(CIP1/WAF1), which inhibits proliferation in the G1 phase of the cell cycle. To determine whether growth arrest was mediated through activation of the p21-dependent G1 checkpoint, the kinetics of cell cycle movement during exposure to 95% O2 were assessed in the Mv1Lu and A549 pulmonary adenocarcinoma cell lines. Cell counts, 5-bromo-2'-deoxyuridine incorporation, and cell cycle analyses revealed that growth arrest of both cell lines occurred in S phase, with A549 cells also showing evidence of a G1 arrest. Hyperoxia increased p21 in A549 but not in Mv1Lu cells, consistent with the activation of the p21-dependent G1 checkpoint. The ability of p21 to exert the G1 arrest was confirmed by showing that hyperoxia inhibited proliferation of HCT 116 colon carcinoma cells predominantly in G1, whereas an isogenic line lacking p21 arrested in S phase. The cell cycle arrest in S phase appears to be a p21-independent process caused by a gradual reduction in the rate of DNA strand elongation. Our data reveal that hyperoxia inhibits proliferation in G1 and S phase and demonstrate that p53 and p21 retain their ability to affect G1 checkpoint control during exposure to elevated O2 levels.  相似文献   

7.
Cytolethal distending toxins (CDTs) block proliferation of mammalian cells by activating DNA damage-induced checkpoint responses. We demonstrate that the Haemophilus ducreyi CDT (HdCDT) induces phosphorylation of the histone H2AX as early as 1 h after intoxication and re-localization of the DNA repair complex Mre11 in HeLa cells with kinetics similar to those observed upon ionizing radiation. Early phosphorylation of H2AX was dependent on a functional Ataxia Telangiectasia mutated (ATM) kinase. Microinjection of a His-tagged HdCdtB subunit, homologous to the mammalian DNase I, was sufficient to induce re-localization of the Mre11 complex 1 h post treatment. However, the enzymatic potency was much lower than that exerted by bovine DNase I, which caused marked chromatin changes at 106 times lower concentrations than HdCdtB. H2AX phosphorylation and Mre11 re-localization were induced also in HdCDT-treated, non-proliferating dendritic cells (DCs) in a differentiation dependent manner, and resulted in cell death. The data highlight several novel aspects of CDTs biology. We demonstrate that the toxin activates DNA damage-associated molecules in an ATM-dependent manner, both in proliferating and non-proliferating cells, acting as other DNA damaging agents. Induction of apoptotic death of immature DCs by HdCDT may represent a previously unknown mechanism of immune evasion by CDT-producing microbes.  相似文献   

8.
We investigated the effect of Adriamycin on FL-amnion (FL) cells. After treatment with the drug, the cells arrested at G2, but we did not detect an increase in the p21 levels. We established a p53-deficient derivative of these cells, in which G2 arrest also occurred after treatment with Adriamycin, suggesting that the arrest we observed in these cells is independent of the p53 pathway. Low doses of Adriamycin (100-200 ng/ml) induced G2 arrest, while late S-phase arrest was observed at high doses (500-1000 ng/ml) in both FL and p53-deficient FL cells. Accumulation of cyclin B1 was detected only in cells arrested at G2, and not in those arrested at S phase, suggesting that the S-phase checkpoint functioned efficiently even in p53-deficient FL cells. In both cell lines, caffeine-induced activation of CDC2 kinase was detected only in cells arrested at G2 and CDC2 kinase-activated cells died exhibiting features of apoptosis. CDC2 kinase activation was inhibited by cycloheximide. Furthermore, cycloheximide inhibited activation of CDK2:cyclin A, which normally precedes CDC2 kinase activation in caffeine-treated cells. These results suggest that p53 and p21 do not have special roles in the S- and G2-phase checkpoints and that CDK2:cyclin A could be the target of the G2-phase DNA damage checkpoint.  相似文献   

9.
53BP1 is a conserved nuclear protein that is implicated in the DNA damage response. After irradiation, 53BP1 localizes rapidly to nuclear foci, which represent sites of DNA double strand breaks, but its precise function is unclear. Using small interference RNA (siRNA), we demonstrate that 53BP1 functions as a DNA damage checkpoint protein. 53BP1 is required for at least a subset of ataxia telangiectasia-mutated (ATM)-dependent phosphorylation events at sites of DNA breaks and for cell cycle arrest at the G2-M interphase after exposure to irradiation. Interestingly, in cancer cell lines expressing mutant p53, 53BP1 was localized to distinct nuclear foci and ATM-dependent phosphorylation of Chk2 at Thr 68 was detected, even in the absence of irradiation. In addition, Chk2 was phosphorylated at Thr 68 in more than 50% of surgically resected lung and breast tumour specimens from otherwise untreated patients [corrected]. We conclude that the constitutive activation of the DNA damage checkpoint pathway may be linked to the high frequency of p53 mutations in human cancer, as p53 is a downstream target of Chk2 and ATM.  相似文献   

10.
11.
Ataxia telangiectasia mutated (ATM) kinase plays a crucial role as a master controller in the cellular DNA damage response. Inhibition of ATM leads to inhibition of the checkpoint signaling pathway. Hence, addition of checkpoint inhibitors to anticancer therapies may be an effective targeting strategy. A recent study reported that Wip1, a protein phosphatase, de-phosphorylates serine 1981 of ATM during the DNA damage response. Squalene has been proposed to complement anticancer therapies such as chemotherapy and radiotherapy; however, there is little mechanistic information supporting this idea. Here, we report the inhibitory effect of squalene on ATM-dependent DNA damage signals. Squalene itself did not affect cell viability and the cell cycle of A549 cells, but it enhanced the cytotoxicity of gamma-irradiation (γIR). The in vitro kinase activity of ATM was not altered by squalene. However, squalene increased Wip1 expression in cells and suppressed ATM activation in γIR-treated cells. Consistent with the potential inhibition of ATM by squalene, IR-induced phosphorylation of ATM effectors such as p53 (Ser15) and Chk1 (Ser317) was inhibited by cell treatment with squalene. Thus, squalene inhibits the ATM-dependent signaling pathway following DNA damage through intracellular induction of Wip1 expression.  相似文献   

12.
In addition to replicative senescence, normal diploid fibroblasts undergo stress-induced premature senescence (SIPS) in response to DNA damage caused by oxidative stress or ionizing radiation (IR). SIPS is not prevented by telomere elongation, indicating that, unlike replicative senescence, it is triggered by nonspecific genome-wide DNA damage rather than by telomere shortening. ATM, the product of the gene mutated in individuals with ataxia telangiectasia (AT), plays a central role in cell cycle arrest in response to DNA damage. Whether ATM also mediates signaling that leads to SIPS was investigated with the use of normal and AT fibroblasts stably transfected with an expression vector for the catalytic subunit of human telomerase (hTERT). Expression of hTERT in AT fibroblasts resulted in telomere elongation and prevented premature replicative senescence, but it did not rescue the defect in G(1) checkpoint activation or the hypersensitivity of the cells to IR. Despite these remaining defects in the DNA damage response, hTERT-expressing AT fibroblasts exhibited characteristics of senescence on exposure to IR or H(2)O(2) in such a manner that triggers SIPS in normal fibroblasts. These characteristics included the adoption of an enlarged and flattened morphology, positive staining for senescence-associated beta-galactosidase activity, termination of DNA synthesis, and accumulation of p53, p21(WAF1), and p16(INK4A). The phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), which mediates signaling that leads to senescence, was also detected in both IR- or H(2)O(2)-treated AT and normal fibroblasts expressing hTERT. These results suggest that the ATM-dependent signaling pathway triggered by DNA damage is dispensable for activation of p38 MAPK and SIPS in response to IR or oxidative stress.  相似文献   

13.
Heterochromatin (HC) poses a barrier to γH2AX focus expansion and DNA double-strand break (DSB) repair, the latter being relieved by ATM-dependent KAP-1 phosphorylation. Using high-resolution imaging, we show here that the HC superstructure markedly restricts ATM signaling to cell cycle checkpoint proteins. The impact of HC is greater than anticipated from the percentage of HC-DNA and, in distinction to DSB repair, ATM only partly overcomes the constraints posed by HC. Importantly, we examine ATM signaling in human syndromes with disordered HC. After depletion of MeCP2 and DNMT3B, proteins defective in the Rett and immunodeficiency with centromere instability and facial anomalies (ICF) syndromes, respectively, we demonstrate enhanced γH2AX signal expansion at HC-chromocenters in mouse NIH 3T3 cells, which have visible HC-chromocenters. Previous studies have shown that the G(2)/M checkpoint is inefficient requiring multiple DSBs to initiate arrest. MeCP2 and DNMT3B depletion leads to hypersensitive radiation-induced G(2)/M checkpoint arrest despite normal DSB repair. Cell lines from Rett, ICF, and Hutchinson-Guildford progeria syndrome patients similarly showed hyperactivated ATM signaling and hypersensitive and prolonged G(2)/M checkpoint arrest. Collectively, these findings reveal that heterochromatin contributes to the previously described inefficient G(2)/M checkpoint arrest and demonstrate how the signaling response can be uncoupled from DSB repair.  相似文献   

14.
Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. Recent reports show that Plk1 is involved in both G2 and mitotic DNA damage checkpoints. Ataxia telangiectasia mutated kinase (ATM) is an important enzyme involved in G2 phase cell cycle arrest following interphase DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in an ATM-/ATM-Rad3-related kinase (ATR)-dependent fashion. However, it is unclear how Plk1 is regulated in response to M phase DNA damage. We found that treatment of mitotic cells with DNA damaging agents inhibits Plk1 activity primarily through dephosphorylation of Plk1, which occurred in both p53 wild-type and mutant cells. Inhibition of Plk1 is not prevented by caffeine pretreatment that inhibits ATM activity and also occurs in ATM mutant cell lines. Furthermore, ATM mutant cell lines, unlike wild-type cells, fail to arrest after mitotic DNA damaging treatments. The phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, reduces Plk1 dephosphorylation following mitotic DNA damaging treatments, suggesting that the PI3K pathway may be involved in regulating Plk1 activity. Earlier studies showed that inhibition of Plk1 by G2 DNA damage occurs in an ATM-dependent fashion. Our results extend the previous studies by showing that ATM is not required for dephosphorylation and inhibition of Plk1 activity following mitotic DNA damage, and also suggest that Plk1 is not a principal regulator or mediator of the mitotic DNA damage response.  相似文献   

15.
To maintain genomic integrity DNA damage response (DDR), signaling pathways have evolved that restrict cellular replication and allow time for DNA repair. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), linked to growth inhibition. Its expression is repressed by mitogens but up-regulated during cell cycle arrest responses to anti-proliferative signals. Here we investigate the potential link between elevated CycG2 expression and DDR signaling pathways. Expanding our previous finding that CycG2 overexpression induces a p53-dependent G(1)/S phase cell cycle arrest in HCT116 cells, we now demonstrate that this arrest response also requires the DDR checkpoint protein kinase Chk2. In accord with this finding we establish that ectopic CycG2 expression increases phosphorylation of Chk2 on threonine 68. We show that DNA double strand break-inducing chemotherapeutics stimulate CycG2 expression and correlate its up-regulation with checkpoint-induced cell cycle arrest and phospho-modification of proteins in the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) signaling pathways. Using pharmacological inhibitors and ATM-deficient cell lines, we delineate the DDR kinase pathway promoting CycG2 up-regulation in response to doxorubicin. Importantly, RNAi-mediated blunting of CycG2 attenuates doxorubicin-induced cell cycle checkpoint responses in multiple cell lines. Employing stable clones, we test the effect that CycG2 depletion has on DDR proteins and signals that enforce cell cycle checkpoint arrest. Our results suggest that CycG2 contributes to DNA damage-induced G(2)/M checkpoint by enforcing checkpoint inhibition of CycB1-Cdc2 complexes.  相似文献   

16.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Polo-like kinase 1 (Plk1) is an important regulator of several events during mitosis. In addition to Plk1 functions in cell cycle, Plk1 is involved in DNA damage check-point in G2 phase. Normally, ataxia telangiectasia-mutated kinase (ATM) is a key enzyme involved in G2 phase cell cycle arrest following DNA damage, and inhibition of Plk1 by DNA damage during G2 occurs in a ATM/ATR-dependent manner. However, it is still unclear how Plk1 is regulated in response to DNA damage in mitosis in which Plk1 is already activated. Here, we show that treatment of mitotic cells with doxorubicin and gamma-irradiation inhibits Plk1 activity through dephosphorylation of Plk1, and cells were arrested in G2 phase. Treatments of the phosphatase inhibitors and siRNA experiments suggested that PP2A pathway might be involved in regulating mitotic Plk1 activity in mitotic DNA damage. Finally, we propose a novel pathway, which is connected between ATM/ATR/Chk and protein phosphatase-Plk1 in DNA damage response in mitosis.  相似文献   

17.
Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G?/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G?/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G?/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G?/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments.  相似文献   

18.
19.
The cytolethal distending toxins (CDTs) are unique in their ability to induce DNA damage, activate checkpoint responses and cause cell cycle arrest or apoptosis in intoxicated cells. However, little is known about their cellular internalization pathway. We demonstrate that binding of the Haemophilus ducreyi CDT (HdCDT) on the plasma membrane of sensitive cells was abolished by cholesterol extraction with methyl-beta-cyclodextrin. The toxin was internalized via the Golgi complex, and retrogradely transported to the endoplasmic reticulum (ER), as assessed by N-linked glycosylation. Further translocation from the ER did not require the ER-associated degradation (ERAD) pathway, and was Derlin-1 independent. The genotoxic activity of HdCDT was dependent on its internalization and its DNase activity, as induction of DNA double-stranded breaks was prevented in Brefeldin A-treated cells and in cells exposed to a catalytically inactive toxin. Our data contribute to a better understanding of the CDT mode of action and highlight two important aspects of the biology of this bacterial toxin family: (i) HdCDT translocation from the ER to the nucleus does not involve the classical pathways followed by other retrogradely transported toxins and (ii) toxin internalization is crucial for execution of its genotoxic activity.  相似文献   

20.
In order to take advantage of cell replication machinery, viruses have evolved complex strategies to override cell cycle checkpoints and force host cells into S phase. To do so, virus products must interfere not only with the basal cell cycle regulators, such as pRb or Mad2, but also with the main surveillance pathways such as those controlled by p53 and ATM. Recently, a number of defective viruses has been produced which, lacking the latter ability, are incapable of replicating in normal cells but should be able to grow and finally lyse those cells that, such as the tumor cells, have lost their surveillance mechanisms. A prototype of these oncolytic viruses is the E1B55K-defective Adenovirus ONYX-015, which was predicted to selectively replicate and kill p53-deficient cancer cells. We found that, despite wt p53 and notwithstanding the activation of the checkpoint regulators p53, ATM, and Mad2, ONYX-015 actively replicated in HUVEC cells. Furthermore, ONYX-015 replication induced a specific phenotype, which is distinct from that of the E4-deleted adenovirus dlE4 Ad5, although both viruses express the main regulatory region E1A. This phenotype includes overriding of the G1/S and G2/M checkpoints, over-expression of MAD2 and retardation of mitosis and accumulation of polyploid cells, suggesting the occurrence of alterations at the mitotic-spindle checkpoint and impairment of the post-mitotic checkpoint. Our data suggest that viral E1A and E4 region products can override all host cell-checkpoint response even at the presence of a full activation of the ATM/p53 pathway. Furthermore, the E4 region alone seems to act independently of the E1B55K virus product in impairing the ATM-dependent, p53-independent G2/M checkpoint since dlE4 Ad5-infected cells arrested in G2 while ONYX-015-infected cells did enter mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号