首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel mechanism of inhibiting HIV-1 protease (HIVp) is presented. Using computational solvent mapping to identify complementary interactions and the Multiple Protein Structure method to incorporate protein flexibility, we generated a receptor-based pharmacophore model of the flexible flap region of the semiopen, apo state of HIVp. Complementary interactions were consistently observed at the base of the flap, only within a cleft with a specific structural role. In the closed, bound state of HIVp, each flap tip docks against the opposite monomer, occupying this cleft. This flap-recognition site is filled by the protein and cannot be identified using traditional approaches based on bound, closed structures. Virtual screening and dynamics simulations show how small molecules can be identified to complement this cleft. Subsequent experimental testing confirms inhibitory activity of this new class of inhibitor. This may be the first new inhibitor class for HIVp since dimerization inhibitors were introduced 17 years ago.  相似文献   

2.
Heat shock protein (Hsp90α) has been recently implicated in cancer, prompting several attempts to discover and optimize new Hsp90α inhibitors. Towards this end, we docked 83 diverse Hsp90α inhibitors into the ATP-binding site of this chaperone using several docking-scoring settings. Subsequently, we applied our newly developed computational tool-docking-based comparative intramolecular contacts analysis (dbCICA)-to assess the different docking conditions and select the best settings. dbCICA is based on the number and quality of contacts between docked ligands and amino acid residues within the binding pocket. It assesses a particular docking configuration based on its ability to align a set of ligands within a corresponding binding pocket in such a way that potent ligands come into contact with binding site spots distinct from those approached by low-affinity ligands, and vice versa. The optimal dbCICA models were translated into valid pharmacophore models that were used as 3D search queries to mine the National Cancer Institute's structural database for new inhibitors of Hsp90α that could potentially be used as anticancer agents. The process culminated in 15 micromolar Hsp90α ATPase inhibitors.  相似文献   

3.
Zhang Z  Wriggers W 《Biochemistry》2011,50(12):2144-2156
Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play important roles in cell proliferation and signaling. The EGFR extracellular domain (sEGFR) forms a dimer upon the binding of ligands, such as epidermal growth factor (EGF) and transforming growth factor α (TGFα). In this study, multiple molecular dynamics (MD) simulations of the 2:2 EGF·sEGFR3-512 dimer and the 2:2 TGFα·sEGFR3-512 dimer were performed in solvent and crystal environments. The simulations of systems comprising up to half a million atoms reveal part of the structural dynamics of which sEGFR dimers are capable. The solvent simulations consistently exhibited a prominent conformational relaxation from the initial crystal structures on the nanosecond time scale, leading to symmetry breaking and more extensive contacts between the two sEGFR monomers. In the crystal control simulation, this symmetry breaking and compaction was largely suppressed by crystal packing contacts. The simulations also provided evidence that the disordered domain IV of sEGFR may act as a stabilizing spacer in the dimer. Thus, the simulations suggest that the sEGFR dimer can take diverse configurations in solvent environments. These biologically relevant conformations of the EGFR signal transduction network can be controlled by contacts among the structural domains of sEGFR and its ligands.  相似文献   

4.
5.
6.
Meagher KL  Carlson HA 《Proteins》2005,58(1):119-125
HIV-1 protease (HIVp) is an important target for the development of therapies to treat AIDS and is one of the classic examples of structure-based drug design. The flap region of HIVp is known to be highly flexible and undergoes a large conformational change upon binding a ligand. Accurately modeling the inherent flexibility of the HIVp system is critical for developing new methods for structure-based drug design. We report several 3-ns molecular dynamics simulations investigating the role of solvation in HIVp flap rearrangement. Using an unliganded crystal structure of HIVp, other groups have observed flap reorganization on the nanosecond timescale. We have also observed rapid, initial flap movement, but we propose that it may be caused by system setup. The initial solvation of the system creates vacuum regions around the protein that may encourage large conformational deformities. By reducing the vacuum space created by the solvation routine, the observed flap collapse is attenuated. Also, a more thorough equilibration procedure preserves a more stable protein conformation over the course of the simulation.  相似文献   

7.
A congeneric series of benzamidine-type ligands with a central proline moiety and a terminal cycloalkyl group—linked by a secondary amine, ether, or methylene bridge—was synthesized as trypsin inhibitors. This series of inhibitors was investigated by isothermal titration calorimetry, crystal structure analysis in two crystal forms, and molecular dynamics simulations. Even though all of these congeneric ligands exhibited essentially the same affinity for trypsin, their binding profiles at the structural, dynamic, and thermodynamic levels are very distinct. The ligands display a pronounced enthalpy/entropy compensation that results in a nearly unchanged free energy of binding, even though individual enthalpy and entropy terms change significantly across the series. Crystal structures revealed that the secondary amine-linked analogs scatter over two distinct conformational families of binding modes that occupy either the inside or of the outside the protein's S3/S4 specificity pocket. In contrast, the ether-linked and methylene-linked ligands preferentially occupy the hydrophobic specificity pocket. This also explains why the latter ligands could only be crystallized in the conformationally restricting closed crystal form whereas the derivative with the highest residual mobility in the series escaped our attempts to crystallize it in the closed form; instead, a well-resolved structure could only be achieved in the open form with the ligand in disordered orientation. These distinct binding modes are supported by molecular dynamics simulations and correlate with the shifting enthalpic/entropic signatures of ligand binding. The examples demonstrate that, at the molecular level, binding modes and thermodynamic binding signatures can be very different even for closely related ligands. However, deviating binding profiles provide the opportunity to optimally address a given target.  相似文献   

8.
The crystal structures of endothiapepsin, a fungal aspartic proteinase (EC 3.4.23.6), cocrystallized with two oligopeptide renin inhibitors, PD125967 and PD125754, have been determined at 2.0-A resolution and refined to R-factors of 0.143 and 0.153, respectively. These inhibitors, which are of the hydroxyethylene and statine types, respectively, possess a cyclohexylalanine side chain at P1 and have interesting functionalities at the P3 position which, until now, have not been subjected to crystallographic analysis. PD125967 has a bis(1-naphthylmethyl)acetyl residue at P3, and PD125754 possesses a hydroxyethylene analogue of the P3-P2 peptide bond for proteolytic stability. The structures reveal that the S3 pocket accommodates one naphthyl ring with conformational changes of the Asp 77 and Asp 114 side chains, the other naphthyl group residing in the S4 region. The P3-P2 hydroxyethylene analogue of PD125754 forms a hydrogen bond with the NH of Thr 219, thereby making the same interaction with the enzyme as the equivalent peptide groups of all inhibitors studied so far. The absence of side chains at the P2 and P1' positions of this inhibitor allows water molecules to occupy the respective pockets in the complex. The relative potencies of PD125967 and PD125754 for endothiapepsin are consistent with the changes in solvent-accessible area which take place on inhibitor binding.  相似文献   

9.
Crystal structures of the catalytic subunit α of cAMP-dependent protein kinase (PKAc) with three adenosine analogue-oligoarginine conjugates (ARCs) are presented. The rationally designed ARCs include moieties that, in combination, target both the ATP- and the peptide-substrate-binding sites of PKAc, thereby taking advantage of high-affinity binding interactions offered by the ATP site while utilizing an additional mechanism for target specificity via binding to the peptide substrate site. The crystal structuresdemonstrate that, in accord with the previously reported bisubstrate character of ARCs, the inhibitors occupy both binding sites of PKAc. Further, they show new binding modes that may also apply to natural protein substrates of PKAc, which have not been revealed by previous crystallographic studies. The crystal structures described here contribute to the understanding of the substrate-binding patterns of PKAc and should also facilitate the design of inhibitors targeting PKAc and related protein kinases.  相似文献   

10.
A series of optimized sulfonamide derivatives was recently reported as novel inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). These are based on naphthalene-N-sulfonyl-D-glutamic acid and have the D-glutamic acid replaced with rigidified mimetics. Here we have defined the binding site of these novel ligands to MurD using 1H/13C heteronuclear single quantum correlation. The MurD protein was selectively 13C-labeled on the methyl groups of Ile (δ1 only), Leu and Val, and was isolated and purified. Crucial Ile, Leu and Val methyl groups in the vicinity of the ligand binding site were identified by comparison of chemical shift perturbation patterns among the ligands with various structural elements and known binding modes. The conformational and dynamic properties of the bound ligands and their binding interactions were examined using the transferred nuclear Overhauser effect and saturation transfer difference. In addition, the binding mode of these novel inhibitors was thoroughly examined using unrestrained molecular dynamics simulations. Our results reveal the complex dynamic behavior of ligand–MurD complexes and its influence on ligand–enzyme contacts. We further present important findings for the rational design of potent Mur ligase inhibitors.  相似文献   

11.
In order to understand the binding modes of human DNA polymerase α (pol α) inhibitors on a molecular level, a 3D homology model of the active site of the enzyme was proposed based on the application of molecular modelling methods and molecular dynamic simulations using available crystal coordinates of pol α relatives. Docking results for a series of known nucleotide analogue inhibitors were consistent with reported experimental binding data and offered the possibility to elucidate structure-activity relationships via investigations of active site-inhibitor interactions. Furthermore, the study could explain, at least partially, the inhibitory effect of aphidicolin on pol α. In molecular dynamics simulations, aphidicolin occupied the catalytic centre, but acted in a not truly competitive manner with respect to nucleotides. It destabilized the replicating “closed” form of the pol α and transferred the enzyme into the inactive “open” conformation. This result is consistent with recent experiments on the binding mode of aphidicolin.  相似文献   

12.
Lipophilic 2,4-diaminopyrimidines with a 5-adamantyl substituent are effective inhibitors of mammalian dihydrofolate reductase (DHFR) and produce an additional 1000-fold increase in their cytotoxic activity when the substituent in position six is changed from hydrogen to ethyl, but drops at propyl. The results of X-ray crystal structure analysis of these antifolates show that the pyrimidine ring and its substituents become more distorted from coplanarity as the size of the 6-substituent increases. Computer graphic modelling of the binding of these antifolates in the active site of the chicken liver DHFR-NADPH binary complex indicates that both the adamantyl group and 6-substituent occupy hydrophobic pockets. Exploration of the size and character of the protein environment about the 6-position suggests that neither the ethyl nor the propyl group make optimal contacts with the functional groups surrounding this pocket. From these studies the design of alternative 6-substituent antifolates are suggested which could make specific contacts with the residues in this region of the protein.  相似文献   

13.
The α-1,3-glucosyltransferase WaaG is involved in the synthesis of the core region of lipopolysaccharides in E. coli. A fragment-based screening for inhibitors of the WaaG glycosyltrasferase donor site has been performed using NMR spectroscopy. Docking simulations were performed for three of the compounds of the fragment library that had shown binding activity towards WaaG and yielded 3D models for the respective complexes. The three ligands share a hetero-bicyclic ring system as a common structural motif and they compete with UDP-Glc for binding. Interestingly, one of the compounds promoted binding of uridine to WaaG, as seen from STD NMR titrations, suggesting a different binding mode for this ligand. We propose these compounds as scaffolds for the design of selective high-affinity inhibitors of WaaG. Binding of natural substrates, enzymatic activity and donor substrate selectivity were also investigated by NMR spectroscopy. Molecular dynamics simulations of WaaG were carried out with and without bound UDP and revealed structural changes compared to the crystal structure and also variations in flexibility for some amino acid residues between the two WaaG systems studied.  相似文献   

14.
Estrogen receptor-α (ERα) is expressed more in patients with breast cancer and its level correlated with endocrine resistance. LMTK3 is reported as breast cancer target with regulation of estrogen receptor-α (ERα) through phosphorylation. In this computational study, structure-based inhibitor screening was performed on human LMTK3 using ZINC database. ATP-binding cavity with critical residues involved in the LMTK3 phosphorylation was used as target site for the screening. From the large ligand library, the best compounds were screen with three-phase virtual screening methods in Dockblaster, AutoDock Vina and AutoDock, respectively. The evaluation of ligands was carried out by binding energy and weak interactions, such as hydrogen bond interactions and hydrophobic contacts, in the target site that favors LMTK3 inhibition. Top compounds were found to be more effective in druglikeness activity by ADME prediction. The stability and binding affinity of ligand complexes were optimized by trajectory analysis such as RMSD, Rg, SASA and interhydrogen bonds from molecular dynamics simulations. The behavior of protein motion after ligand binding was illustrated by eigenvectors from principal component analysis (PCA). In addition, binding free energy of the LMTK3–ligand complexes were calculated by MM/PBSA methods and results supported the strong binding in dynamic system. Thus, the computational studies illustrated the structural insights on LMTK3 inhibition mechanism by ligands ZINC04670539, ZINC05607079 and ZINC04344028, also proposed as potent lead candidates. Our findings step towards developing novel LMTK3 inhibitors and identified lead candidates can be future breast cancer drugs with further experimental studies.  相似文献   

15.
Two potent inhibitors (compounds 1 and 2) of malarial aspartyl protease, plasmepsin-II, were evaluated against wild type (NL4-3) and multidrug-resistant clinical isolate 769 (MDR) variants of human immunodeficiency virus type-1 (HIV-1) aspartyl protease. Enzyme inhibition assays showed that both 1 and 2 have better potency against NL4-3 than against MDR protease. Crystal structures of MDR protease in complex with 1 and 2 were solved and analyzed. Crystallographic analysis revealed that the MDR protease exhibits a typical wide-open conformation of the flaps (Gly48 to Gly52) causing an overall expansion in the active site cavity, which, in turn caused unstable binding of the inhibitors. Due to the expansion of the active site cavity, both compounds showed loss of direct contacts with the MDR protease compared to the docking models of NL4-3. Multiple water molecules showed a rich network of hydrogen bonds contributing to the stability of the ligand binding in the distorted binding pockets of the MDR protease in both crystal structures. Docking analysis of 1 and 2 showed a decrease in the binding affinity for both compounds against MDR supporting our structure-function studies. Thus, compounds 1 and 2 show promising inhibitory activity against HIV-1 protease variants and hence are good candidates for further development to enhance their potency against NL4-3 as well as MDR HIV-1 protease variants.  相似文献   

16.
Signal peptide peptidase (SPP) and gamma-secretase are intramembrane aspartyl proteases that bear similar active site motifs but with opposite membrane topologies. Both proteases are inhibited by the same aspartyl protease transition-state analogue inhibitors, further evidence that these two enzymes have the same basic cleavage mechanism. Here we report that helical peptide inhibitors designed to mimic SPP substrates and interact with the SPP initial substrate-binding site (the "docking site") inhibit both SPP and gamma-secretase, but with submicromolar potency for SPP. SPP was labeled by helical peptide and transition-state analogue affinity probes but at distinct sites. Nonsteroidal anti-inflammatory drugs, which shift the site of proteolysis by SPP and gamma-secretase, did not affect the labeling of SPP or gamma-secretase by the helical peptide or transition-state analogue probes. On the other hand, another class of previously reported gamma-secretase modulators, naphthyl ketones, inhibited SPP activity as well as selective proteolysis by gamma-secretase. These naphthyl ketones significantly disrupted labeling of SPP by the helical peptide probe but did not block labeling of SPP by the transition-state analogue probe. With respect to gamma-secretase, the naphthyl ketone modulators allowed labeling by the transition-state analogue probe but not the helical peptide probe. Thus, the naphthyl ketones appear to alter the docking sites of both SPP and gamma-secretase. These results indicate that pharmacological effects of the four different classes of inhibitors (transition-state analogues, helical peptides, nonsteroidal anti-inflammatory drugs, and naphthyl ketones) are distinct from each other, and they reveal similarities and differences with how they affect SPP and gamma-secretase.  相似文献   

17.
The goal of this study was to use X-ray crystallography to investigate the structural basis of resistance to human immunodeficiency virus type 1 (HIV-1) protease inhibitors. We overexpressed, purified, and crystallized a multidrug-resistant (MDR) HIV-1 protease enzyme derived from a patient failing on several protease inhibitor-containing regimens. This HIV-1 variant contained codon mutations at positions 10, 36, 46, 54, 63, 71, 82, 84, and 90 that confer drug resistance to protease inhibitors. The 1.8-angstrom (A) crystal structure of this MDR patient isolate reveals an expanded active-site cavity. The active-site expansion includes position 82 and 84 mutations due to the alterations in the amino acid side chains from longer to shorter (e.g., V82A and I84V). The MDR isolate 769 protease "flaps" stay open wider, and the difference in the flap tip distances in the MDR 769 variant is 12 A. The MDR 769 protease crystal complexes with lopinavir and DMP450 reveal completely different binding modes. The network of interactions between the ligands and the MDR 769 protease is completely different from that seen with the wild-type protease-ligand complexes. The water molecule-forming hydrogen bonds bridging between the two flaps and either the substrate or the peptide-based inhibitor are lacking in the MDR 769 clinical isolate. The S1, S1', S3, and S3' pockets show expansion and conformational change. Surface plasmon resonance measurements with the MDR 769 protease indicate higher k(off) rates, resulting in a change of binding affinity. Surface plasmon resonance measurements provide k(on) and k(off) data (K(d) = k(off)/k(on)) to measure binding of the multidrug-resistant protease to various ligands. This MDR 769 protease represents a new antiviral target, presenting the possibility of designing novel inhibitors with activity against the open and expanded protease forms.  相似文献   

18.
Potent inhibitors of human cysteine proteases of the papain family have been made and assayed versus a number of relevant family members. We describe the synthesis of peptide alpha-ketoheterocyclic inhibitors that occupy binding subsites S1'-S3 of the cysteine protease substrate recognition cleft and that form a reversible covalent bond with the Cys 25 nucleophile. X-ray crystal structures of cathepsin K both unbound and complexed with inhibitors provide detailed information on protease/inhibitor interactions and suggestions for the design of tight-binding, selective molecules.  相似文献   

19.
A mouse monoclonal anti-2,4,6-trinitrophenyl IgE (clone Lb4) was screened with a random set of over 2000 compounds, and several ligands were found to bind with affinities comparable to that of the immunizing hapten (KD in the μM range). An automated docking algorithm was used for the prediction of complex structures formed by 2,4-dinitrophenyl (DNP) and non-DNP ligands in the fragment variable region of IgE(Lb4). All ligands were found to dock in an L-shaped cavity of 15 × 16 × 10 Å, surrounded by complementary-determining regions L1, L3, H2 and H3. The ligands were found to occupy the same binding site in different orientations. For rigid ligands the most stable orientation could be predicted with high probability, based on the calculated energy of binding and the occurrence frequencies of identical complexes obtained by repeated simulations. The localization of a flexible ligand (cycrimine-R) was more ambiguous, but it still docked in the same site. The results support a model for heteroligating antibody (Ab) binding sites, where different ligands utilize the total set of available contacts in different combinations. It is suggested that although pseudoenergies calculated by the docking algorithm do not correlate with experimentally measured binding energies, the screening-and-docking procedure can be useful for the mapping of Ab and other receptor binding sites ligating small molecules.  相似文献   

20.
A total of 20 novel 1,3,4-oxadiazoline analogs (6a-6t) of combretastatin A-4 with naphthalene ring were designed, synthesized, and evaluated for biological activities as potential tubulin polymerization inhibitors. Among these compounds, 6n showed the most potent antiproliferative activities against multiple cancer cell lines and retained the microtubule disrupting effects. Docking simulation was performed to insert compound 6n into the crystal structure of tubulin to determine the probable binding model. These results indicated oxadiazoline compounds bearing the naphthyl moiety are promising tubulin inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号