首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The number of artificial protein supramolecules has been increasing; however, control of protein oligomer formation remains challenging. Cytochrome c′ from Allochromatium vinosum (AVCP) is a homodimeric protein in its native form, where its protomer exhibits a four‐helix bundle structure containing a covalently bound five‐coordinate heme as a gas binding site. AVCP exhibits a unique reversible dimer–monomer transition according to the absence and presence of CO. Herein, domain‐swapped dimeric AVCP was constructed and utilized to form a tetramer and high‐order oligomers. The X‐ray crystal structure of oxidized tetrameric AVCP consisted of two monomer subunits and one domain‐swapped dimer subunit, which exchanged the region containing helices αA and αB between protomers. The active site structures of the domain‐swapped dimer subunit and monomer subunits in the tetramer were similar to those of the monomer subunits in the native dimer. The subunit–subunit interactions at the interfaces of the domain‐swapped dimer and monomer subunits in the tetramer were also similar to the subunit–subunit interaction in the native dimer. Reduced tetrameric AVCP dissociated to a domain‐swapped dimer and two monomers upon CO binding. Without monomers, the domain‐swapped dimers formed tetramers, hexamers, and higher‐order oligomers in the absence of CO, whereas the oligomers dissociated to domain‐swapped dimers in the presence of CO, demonstrating that the domain‐swapped dimer maintains the CO‐induced subunit dissociation behavior of native ACVP. These results suggest that protein oligomer formation may be controlled by utilizing domain swapping for a dimer–monomer transition protein.  相似文献   

2.
The integral membrane light-harvesting (LH) proteins from purple photosynthetic bacteria form circular oligomers of an elementary unit that is composed of two very hydrophobic polypeptides, termed alpha and beta. These apoprotein dimers are known to associate into closed circular arrays of 8, 9 and 16 alpha/beta-mers. We report the existence of peripheral LH proteins purified from Allochromatium vinosum with two intermediate ring sizes and postulate that one is a 13 alpha/beta-mer. This shows that LH proteins are able to form membrane rings of continuously increasing diameter from 68 to 115A. The presence of these new ring sizes warrants further study, as it will help to further validate the structure-function models of LH proteins currently found in the literature.  相似文献   

3.
4.
5.
Heterotrimeric G proteins, which consist of Gα, Gβ and Gγ subunits, function as molecular switches that regulate a wide range of developmental processes in plants. In this study, we characterised the function of rice RGG2, which encodes a type B Gγ subunit, in regulating grain size and yield production. The expression levels of RGG2 were significantly higher than those of other rice Gγ‐encoding genes in all tissues tested, suggesting that RGG2 plays essential roles in rice growth and development. By regulating cell expansion, overexpression of RGG2 in Nipponbare (NIP) led to reduced plant height and decreased grain size. By contrast, two mutants generated by the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR‐associated protein 9 (Cas9) system in the Zhenshan 97 (ZS97) background, zrgg2‐1 and zrgg2‐2, exhibited enhanced growth, including elongated internodes, increased 1000‐grain weight and plant biomass and enhanced grain yield per plant (+11.8% and 16.0%, respectively). These results demonstrate that RGG2 acts as a negative regulator of plant growth and organ size in rice. By measuring the length of the second leaf sheath after gibberellin (GA3) treatment and the GA‐induced α‐amylase activity of seeds, we found that RGG2 is also involved in GA signalling. In summary, we propose that RGG2 may regulate grain and organ size via the GA pathway and that manipulation of RGG2 may provide a novel strategy for rice grain yield enhancement.  相似文献   

6.
Magnesium chelatase (MgCh) is a heterotrimeric enzyme complex, composed of two AAA+ family subunits that can assembly into a double ring structure and a large catalytic subunit. The small AAA+ subunit has ATPase activity and can self‐oligomerize into a ring structure, while the other AAA+ subunit lacks independent ATPase activity. Previous structural studies of the ATPase motor subunit of MgCh from a bacteriochlorophyll‐synthesizing bacterium have identified a unique ATPase clade, but the model of oligomeric assembly is unclear. Here we present the hexameric structure of the MgCh ATPase motor subunit from the chlorophyll‐synthesizing cyanobacterium Synechocystis sp. PCC 6803. This structure reveals details of how the hexameric ring is assembled, and thus provides a basis for further studying the heterotrimeric complex.  相似文献   

7.
The impact of the mitochondrial permeability transition (MPT) on cellular physiology is well characterized. In contrast, the composition and mode of action of the permeability transition pore complex (PTPC), the supramolecular entity that initiates MPT, remain to be elucidated. Specifically, the precise contribution of the mitochondrial F1FO ATP synthase (or subunits thereof) to MPT is a matter of debate. We demonstrate that F1FO ATP synthase dimers dissociate as the PTPC opens upon MPT induction. Stabilizing F1FO ATP synthase dimers by genetic approaches inhibits PTPC opening and MPT. Specific mutations in the F1FO ATP synthase c subunit that alter C‐ring conformation sensitize cells to MPT induction, which can be reverted by stabilizing F1FO ATP synthase dimers. Destabilizing F1FO ATP synthase dimers fails to trigger PTPC opening in the presence of mutants of the c subunit that inhibit MPT. The current study does not provide direct evidence that the C‐ring is the long‐sought pore‐forming subunit of the PTPC, but reveals that PTPC opening requires the dissociation of F1FO ATP synthase dimers and involves the C‐ring.  相似文献   

8.
Conglutin δ, a 2S globulin, was purified and compared in six species or varieties of lupin seeds. A common pattern is suggested, present in all species, corresponding to a protein which could exist as a monomer or a dimer. The first form contains one subunit, from 11 to 16.2 kDa, according to the species. It possesses a quaternary structure closely related to conglutin δ1 and was previously described in the narrow-leaved lupin. The second form contains two similar subunits (23 to 26 kDa) and could be the conglutin δ2. These two subunits are associated even when SDS is used and are probably disulfide-linked subunits. Each subunit is composed of two disulfide-linked polypeptides. One is acidic with molecular weight from 14 to 17.3 kDa and the second is acidic to neutral, from 2.4 to 4.5 kDa. Three species (L. luteus, L. arboreus and L. pilosus) present a supplementary subunit, with different molecular weight and p than that previously described and which never associates in a dimer form. It has been purified in L. luteus. When native, this protein is oligomeric. The subunit of 12 kDa in this species is composed of a polypeptide of 9 kDa (pl 4.5) disulfide-linked to one of 3 kDa (pl 6.5). This supplementary protein remains partly associated with the first in the yellow lupin (L. luteus). It probably corresponds to a new protein, different from conglutin δ.  相似文献   

9.
The identity of the mitochondrial permeability transition (mPT) pore, a megachannel embedded in the inner membrane opened by Ca2+, is fiercely debated. Unraveling the components structuring this pore is critical for combating diseases as diverse as neurodegeneration, cancer, autoimmunity, and myopathies in which this phenomenon is implicated. Current consensus is that the pore is formed within, or in‐between F0F1 ATP synthase dimers, but not through their c‐subunit ring. Two recent studies in this issue of EMBO Reports throw more light on these aspects, one by Giorgio et al 1 showing that the β subunit of the ATP synthase harbors a Ca2+‐binding site responsible for triggering mPT, and the other by Bonora et al 2 demonstrating that permeability transition requires dissociation of F0F1 ATP synthase dimers, albeit in a manner involving the c‐subunit ring.  相似文献   

10.
The mature architecture of the photosynthetic membrane of the purple phototroph Rhodobacter sphaeroides has been characterised to a level where an atomic‐level membrane model is available, but the roles of the putative assembly proteins LhaA and PucC in establishing this architecture are unknown. Here we investigate the assembly of light‐harvesting LH2 and reaction centre‐light‐harvesting1‐PufX (RC‐LH1‐PufX) photosystem complexes using spectroscopy, pull‐downs, native gel electrophoresis, quantitative mass spectrometry and fluorescence lifetime microscopy to characterise a series of lhaA and pucC mutants. LhaA and PucC are important for specific assembly of LH1 or LH2 complexes, respectively, but they are not essential; the few LH1 subunits found in ΔlhaA mutants assemble to form normal RC‐LH1‐PufX core complexes showing that, once initiated, LH1 assembly round the RC is cooperative and proceeds to completion. LhaA and PucC form oligomers at sites of initiation of membrane invagination; LhaA associates with RCs, bacteriochlorophyll synthase (BchG), the protein translocase subunit YajC and the YidC membrane protein insertase. These associations within membrane nanodomains likely maximise interactions between pigments newly arriving from BchG and nascent proteins within the SecYEG‐SecDF‐YajC‐YidC assembly machinery, thereby co‐ordinating pigment delivery, the co‐translational insertion of LH polypeptides and their folding and assembly to form photosynthetic complexes.  相似文献   

11.
12.
Shiga toxin‐producing Escherichia coli (STEC) produce two types of Shiga toxin (STx): STx1 and STx2. The toxin A‐subunits block protein synthesis, while the B‐subunits mediate retrograde trafficking. STEC infections do not have definitive treatments, and there is growing interest in generating toxin transport inhibitors for therapy. However, a comprehensive understanding of the mechanisms of toxin trafficking is essential for drug development. While STx2 is more toxic in vivo, prior studies focused on STx1 B‐subunit (STx1B) trafficking. Here, we show that, compared with STx1B, trafficking of the B‐subunit of STx2 (STx2B) to the Golgi occurs with slower kinetics. Despite this difference, similar to STx1B, endosome‐to‐Golgi transport of STx2B does not involve transit through degradative late endosomes and is dependent on dynamin II, epsinR, retromer and syntaxin5. Importantly, additional experiments show that a surface‐exposed loop in STx2B (β4–β5 loop) is required for its endosome‐to‐Golgi trafficking. We previously demonstrated that residues in the corresponding β4–β5 loop of STx1B are required for interaction with GPP130, the STx1B‐specific endosomal receptor, and for endosome‐to‐Golgi transport. Overall, STx1B and STx2B share a common pathway and use a similar structural motif to traffic to the Golgi, suggesting that the underlying mechanisms of endosomal sorting may be evolutionarily conserved.   相似文献   

13.
The a subunit of the V0 membrane‐integrated sector of human V‐ATPase has four isoforms, a1a4, with diverse and crucial functions in health and disease. They are encoded by four conserved paralogous genes, and their vertebrate orthologs have positionally conserved N‐glycosylation sequons within the second extracellular loop, EL2, of the a subunit membrane domain. Previously, we have shown directly that the predicted sequon for the a4 isoform is indeed N‐glycosylated. Here we extend our investigation to the other isoforms by transiently transfecting HEK 293 cells to express cDNA constructs of epitope‐tagged human a1a3 subunits, with or without mutations that convert Asn to Gln at putative N‐glycosylation sites. Expression and N‐glycosylation were characterized by immunoblotting and mobility shifts after enzymatic deglycosylation, and intracellular localization was determined using immunofluorescence microscopy. All unglycosylated mutants, where predicted N‐glycosylation sites had been eliminated by sequon mutagenesis, showed increased relative mobility on immunoblots, identical to what was seen for wild‐type a subunits after enzymatic deglycosylation. Cycloheximide‐chase experiments showed that unglycosylated subunits were turned over at a higher rate than N‐glycosylated forms by degradation in the proteasomal pathway. Immunofluorescence colocalization analysis showed that unglycosylated a subunits were retained in the ER, and co‐immunoprecipitation studies showed that they were unable to associate with the V‐ATPase assembly chaperone, VMA21. Taken together with our previous a4 subunit studies, these observations show that N‐glycosylation is crucial in all four human V‐ATPase a subunit isoforms for protein stability and ultimately for functional incorporation into V‐ATPase complexes.  相似文献   

14.
The glycoprotein hormones lutropin (LH) and chorionic gonadotropin (CG) share a common structure consisting of an identical alpha subunit noncovalently linked to a hormone-specific beta subunit. While LH is produced in the anterior pituitary, CG is synthesized in placenta. To compare the assembly, processing, and secretion of human LH and CG in the same cell type, we have expressed their subunits, individually and together, in mouse C-127 mammary tumor cells. Analysis of transfected clones revealed an unexpected difference in the secretion of individually expressed subunits. Whereas alpha and CG beta subunits were rapidly and quantitatively secreted, only 10% of newly synthesized LH beta subunit reached the medium. The remaining subunit was found in an intracellular, endoglycosidase H (endo H)-sensitive pool that had a turnover rate of approximately 8 h. Coexpression with alpha subunit resulted in "rescue" of LH beta subunit by formation of LH dimer, which was efficiently secreted. However, combination of LH beta with alpha was slow, with an overall efficiency of only 50% despite the presence of excess alpha. In contrast, CG beta was rapidly assembled with the alpha subunit after synthesis. The two beta subunits also differed in their influence on the N-linked oligosaccharide processing of combined alpha. The oligosaccharides of LH dimer were endo H resistant, while those of CG dimer remained partially endo H sensitive. Thus, despite a high degree of homology between LH beta and CG beta, the two subunits differ in their secretion as free subunits, their rate of assembly with alpha subunit, and in their effect on the N-linked oligosaccharide processing of combined alpha.  相似文献   

15.
Gonadotropins (GtHs), including follicle-stimulating hormone (FSH) and luteinizing hormone (LH), are important hormones involved in gametogenesis, gonadal steroidogenesis, and maturation. In this study, GtH subunits (FSHβ, LHβ and CGα) of largemouth bass (Micropterus salmoides) were cloned and characterized, and their regulation by luteinizing hormone-releasing hormone analog (LHRHa2) and dopamine antagonist (DOM) treatment in vivo was investigated. The full-length cDNA sequences of FSHβ, LHβ, and CGα were 683, 576, and 685bp, encoding 120, 152, and 132 amino acids, respectively. The deduced amino acid sequence analysis revealed that GtH subunits contain conserved cysteine residues and potential N-linked glycosylation sites and showed high homology with the corresponding subunit sequences from other Perciformes by phylogenetic analysis. In the primary growth cortical alveoli stage of largemouth bass, the three GtH subunits were highly expressed in the pituitary, brain and ovary, but weakly in other tissues. After LHRHa2 and DOM injection, mRNA levels of FSHβ, LHβ, and CGα in the pituitary were significantly increased at 12 or 24 hr (p <.05), but significantly decreased at 48 hr; plasma FSH and LH levels showed a consistent trend. Histological analysis classified ovaries from LHRHa2- and DOM-treated fish into the early oocyte maturation stage and late vitellogenesis stage, while those from the control group fish were classified into the early vitellogenesis stage. These results suggested that both LHRHa2 and DOM stimulated GtH subunit expression, increased plasma FSH and LH and accelerated ovary development of largemouth bass, providing a framework for a better understanding of the mechanisms of hormone-mediated reproduction control in teleosts.  相似文献   

16.
Two genes in the rice genome were identified as those encoding the gamma subunits, gamma1 and gamma2, of heterotrimeric G proteins. Using antibodies against the recombinant proteins for the alpha, beta, gamma1, and gamma2 subunits of the G protein complexes, all of the subunits were proven to be localized in the plasma membrane in rice. Gel filtration of solubilized plasma membrane proteins showed that all of the alpha subunits were present in large protein complexes (about 400 kDa) containing the other subunits, beta, gamma1, and gamma2, and probably also some other proteins, whereas large amounts of the beta and gamma (gamma1 and gamma2) subunits were freed from the large complexes and took a 60-kDa form. A yeast two-hybrid assay and co-immunoprecipitation experiments showed that the beta subunit interacted tightly with the gamma1 and gamma2 subunits, and so the beta and gamma subunits appeared to form dimers in rice cells. Some dimers were associated with the alpha subunit, because few beta, gamma1, and gamma2 subunits were present in the 400-kDa complexes in a rice mutant, d1, which was lacking in the alpha subunit. When a constitutively active form of the alpha subunit was prepared by the exchange of one amino acid residue and introduced into d1, the mutagenized subunit was localized in the plasma membrane of the transformants and took a free, and not the 400-kDa, form.  相似文献   

17.
To investigate the structure ofEscherichia coli ribosomal protein S13 in 30S ribosomal subunits, we have previously generated 22 S13 specific monoclonal antibodies and mapped their specific epitopes to the S13 sequence. The availability of these S13 epitopesin situ has been further examined by incubating these monoclonal antibodies with 30S ribosomal subunits and analyzing formation of monoclonal antibody-linked ribosome dimers by sucrose gradients centrifugation. We have found that none of the 22 monoclonal antibodies makes ribosome dimers individually as do typical antisera. However, one monoclonal antibody, designated AS13-MAb 2, reacts with 30S ribosomal subunits to form immunocomplexes sedimenting faster than subunit monomers. When AS13-MAb 2 is paired with any one of three monoclonal antibodies directed to the S13 C-terminal epitopes, dimer formation is observed. Other pairs of monoclonal antibodies directed to distinct S13 epitopes have been tested similarly for dimer formation. Monoclonal antibody AS13-MAb 22, directed to the N-terminal region of 22 residues, also causes subunits to form typical dimers, but only if paired with one of the three monoclonal antibodies directed to the S13 C-terminal region. The close proximity of the epitopes recognized by AS13-MAbs 2 and 22 has been established by the mutual competition between the antibodies binding to intact 30S subunits. These results corroborate our previous observation, using polyclonal antibodies, that S13 has more than one epitope exposed on 30S subunits. Our finding that sequences on both ends of the S13 molecule are immunochemically accessible provides information about the molecular organization of S13in situ.  相似文献   

18.
Protein phosphatase 2A holoenzyme and its subunits from Medicago sativa   总被引:1,自引:0,他引:1  
We detected an about 200 kDa holoenzyme of protein phosphatase 2A (PP2A) in the crude extract of Medicago sativa microcallus cells by gel permeation chromatography. By polymerase chain reaction (PCR) we isolated two M. sativa cDNA fragments corresponding to the catalytic (C) subunit, and one each coding for the A and the B regulatory subunits of PP2A. The C subunit sequences were different from that published previously, indicating the existence of at least three different isoforms in M. sativa. Using the PCR fragments as probes, we obtained two distinct full-length clones for both the A and B subunits from an alfalfa cDNA library. Our results demonstrate that the components of the PP2A holoenzyme, namely the catalytic and regulatory subunits, are present in alfalfa in several isoforms and that their sequences are highly similar to their plant, yeast and animal counterparts. The distinct regulatory subunit genes are constitutively expressed during the cell cycle. Interestingly, two A-B subunit pairs had parallel mRNA steady-state levels in different plant tissues suggesting that not all of the possible isoform combinations are present in all tissues. The expression of the MsPP2A B subunit form was induced by abscisic acid indicating a specific function for this protein in the stress response.  相似文献   

19.
Subunit dimers in sheep spleen apoferritin. The effect on iron storage   总被引:6,自引:0,他引:6  
Ferritin with high and low iron content, 2000 and 790 iron atoms/molecule, was isolated from the spleens of copper-poisoned and control lambs, respectively. Differences in the iron content in vivo were reflected in the properties of the apoferritin protein shells, since the apoprotein from the low iron ferritin took up iron relatively more slowly (0.52 +/- 0.09) and released it more rapidly (1.68 +/- 0.06) in vitro. Although the two types of apoferritin were indistinguishable in terms of surface charge (pI range 4.98-5.43) and in consisting of both heavy and light subunits, the subunit interactions differed markedly; 40-50% of the subunits of low iron ferritin were in dimers stable to reduction and carboxylmethylation, 4% mercaptoethanol, 8% sodium dodecyl sulfate, and 100 degrees C for 30 min, 70% formic acid, and 30% methanol. Subunit dimers were also observed in liver ferritin from mouse and neonatal pig and were enriched in a low iron fraction of horse spleen ferritin. Based on cyanogen bromide fragmentation and NH2-terminal analysis, the natural and chemically cross-linked subunit dimers had two peptides in common; natural subunit dimers also appeared to have a second region cross-linked, suggesting the possibility of both intra- and intersubunit links in the natural dimers. In sheep spleen ferritin, both heavy and light subunits appeared to participate in subunit dimerization. Natural subunit dimers were enriched in low iron ferritin fractions of all ferritin preparations tested (linear correlation = 0.94) and can explain, at least in part, the previously observed effects of iron core size on the apoferritin shell. Whether the subunit cross-links represent part of the subunit assembly process subsequently cleaved by iron (or copper) or whether the cross-links form after iron core formation in vivo has yet to determined. In either case, it is clear that such post-translational variations can affect iron uptake and release and emphasize the importance of the protein shell in determining the iron storage properties of ferritin.  相似文献   

20.
Knowledge of the dynamic features of protein interfaces is necessary for a deeper understanding of protein–protein interactions. We performed normal‐mode analysis (NMA) of 517 nonredundant homodimers and their protomers to characterize dimer interfaces from a dynamic perspective. The motion vector calculated by NMA for each atom of a dimer was decomposed into internal and external motion vectors in individual component subunits, followed by the averaging of time‐averaged correlations between these vectors over atom pairs in the interface. This averaged correlation coefficient (ACC) was defined for various combinations of vectors and investigated in detail. ACCs decrease exponentially with an increasing interface area and r‐value, that is, interface area divided by the entire subunit surface area. As the r‐value reflects the nature of dimer formation, the result suggests that both the interface area and the nature of dimer formation are responsible for the dynamic properties of dimer interfaces. For interfaces with small or medium r‐values and without intersubunit entanglements, ACCs are found to increase on dimer formation when compared with those in the protomer state. In contrast, ACCs do not increase on dimer formation for interfaces with large r‐values and intersubunit entanglements such as in interwinding dimers. Furthermore, relationships between ACCs for intrasubunit atom pairs and for intersubunit atom pairs are found to significantly differ between interwinding and noninterwinding dimers for external motions. External motions are considered as an important factor for characterizing dimer interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号