首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dipeptidyl peptidase I (DPPI) is the sole activator in vivo of several granule-associated serine proteases of cytotoxic lymphocytes. In vitro, DPPI also activates mast cell chymases and tryptases. To determine whether DPPI is essential for their activation in vivo, we used enzyme histochemical and immunohistochemical approaches and solution-based activity assays to study these enzymes in tissues and bone marrow-derived mast cells (BMMCs) from DPPI +/+ and DPPI -/- mice. We find that DPPI -/- mast cells contain normal amounts of immunoreactive chymases but no chymase activity, indicating that DPPI is essential for chymase activation and suggesting that DPPI -/- mice are functional chymase knockouts. The absence of DPPI and chymase activity does not affect the growth, granularity, or staining characteristics of BMMCs and, despite prior predictions, does not alter IgE-mediated exocytosis of histamine. In contrast, the level of active tryptase (mMCP-6) in DPPI -/- BMMCs is 25% that of DPPI +/- BMMCs. These findings indicate that DPPI is not essential for mMCP-6 activation but does influence the total amount of active mMCP-6 in mast cells and therefore may be an important, but not exclusive mechanism for tryptase activation.  相似文献   

2.
Mouse mast cell protease-4 (mMCP-4) has been linked to autoimmune and inflammatory diseases, although the exact mechanisms underlying its role in these pathological conditions remain unclear. Here, we have found that mMCP-4 is critical in a mouse model of the autoimmune skin blistering disease bullous pemphigoid (BP). Mice lacking mMCP-4 were resistant to experimental BP. Complement activation, mast cell (MC) degranulation, and the early phase of neutrophil (PMN) recruitment occurred comparably in mMCP-4(-/-) and WT mice. However, without mMCP-4, activation of matrix metalloproteinase (MMP)-9 was impaired in cultured mMCP-4(-/-) MCs and in the skin of pathogenic IgG-injected mMCP-4(-/-) mice. MMP-9 activation was not fully restored by local reconstitution with WT or mMCP-4(-/-) PMNs. Local reconstitution with mMCP-4(+/+) MCs, but not with mMCP-4(-/-) MCs, restored blistering, MMP-9 activation, and PMN recruitment in mMCP-4(-/-) mice. mMCP-4 also degraded the hemidesmosomal transmembrane protein BP180 both in the skin and in vitro. These results demonstrate that mMCP-4 plays two different roles in the pathogenesis of experimental BP, by both activating MMP-9 and by cleaving BP180, leading to injury of the hemidesmosomes and extracellular matrix of the basement membrane zone.  相似文献   

3.
Although the alpha-chymases of primates and dogs are known as chymotrypsin-like proteases, the enzymatic properties of rodent alpha-chymases (rat mast cell protease 5/rMCP-5 and mouse mast cell protease 5/mMCP-5) have not been fully understood. We report that recombinant rMCP-5 and mMCP-5 are elastase-like proteases, not chymotrypsin-like proteases. An enzyme assay using chromogenic peptidyl substrates showed that mast cell protease-5s (MCP-5s) have a clear preference for small aliphatic amino acids (e.g. alanine, isoleucine, valine) in the P1 site of substrates. We used site-directed mutagenesis and computer modeling approaches to define the determinant residue for the substrate specificity of mMCP-5, and found that the mutant possessing a Gly substitution of the Val at position 216 (V216G) lost elastase-like activity but acquired chymase activity, suggesting that the Val216 dominantly restricts the substrate specificity of mMCP-5. Structural models of mMCP-5 and the V216G mutant based on the crystal structures of serine proteases (rMCP-2, human cathepsin G, and human chymase) revealed the active site differences that can account for the marked differences in substrate specificity of the two enzymes between elastase and chymase. These findings suggest that rodent alpha-chymases have unique biological activity different from the chymases of other species.  相似文献   

4.
The octapeptide angiotensin II (Ang II) exerts a wide range of effects on the cardiovascular system but has also been implicated in the regulation of cell proliferation, fibrosis, and apoptosis. Ang II is formed by cleavage of Ang I by angiotensin-converting enzyme, but there is also evidence for non-angiotensin-converting enzyme-dependent conversion of Ang I to Ang II. Here we address the role of mast cell proteases in Ang II production by using two different mouse strains lacking mast cell heparin or mouse mast cell protease 4 (mMCP-4), the chymase that may be the functional homologue to human chymase. Ang I was added to ex vivo cultures of peritoneal cells, and the generation of Ang II and other metabolites was analyzed. Activation of mast cells resulted in marked increases in both the formation and subsequent degradation of Ang II, and both of these processes were strongly reduced in heparin-deficient peritoneal cells. In the mMCP-4(-/-) cell cultures no reduction in the rate of Ang II generation was seen, but the formation of Ang-(5-10) was completely abrogated. Addition of a carboxypeptidase A (CPA) inhibitor to wild type cells caused complete inhibition of the formation of Ang-(1-9) and Ang-(1-7) but did not inhibit Ang II formation. However, when the CPA inhibitor was added to the mMCP-4(-/-) cultures, essentially complete inhibition of Ang II formation was obtained. Taken together, the results of this study indicate that mast cell chymase and CPA have key roles in both the generation and degradation of Ang II.  相似文献   

5.
We have observed extensive mast cell degranulation in the reperfused hindlimb muscle of the mouse, accompanied by pathological changes within the muscle. As quantitated by the tissue:blood (125)I permeability ratio, both the hindlimbs and lungs exhibited a significant increment in permeability during hindlimb reperfusion. In lungs of the same mice, mast cell-derived chymase mMCP-1 coats alveolar macrophages, an event noted by us in acid-induced direct lung injury. Mast cells in the lung contain mMCP-1, whereas those in the muscle do not. Neither extensive muscle injury nor an increased pulmonary permeability index occurs in the mast cell-deficient W/W(v) mice. We conclude that the mast cell is a key mediator in both local ischemia-reperfusion injury (I-R) of muscle and consequent remote lung injury.  相似文献   

6.
The ability to convert angiotensin (Ang) I to Ang II was compared between human alpha-chymase and two mouse beta-chymases, mouse mast cell protease (mMCP)-1 and mMCP-4. Human chymase hydrolyzed Ang I to produce Ang II without further degradation. mMCP-1 similarly generated Ang II from Ang I in a time-dependent manner and the formation of the fragment other than Ang II was marginal. In contrast, mMCP-4 hydrolyzed Ang I at two sites, Tyr(4)-Ile(5) and Phe(8)-His(9), with Ang II formation being tentative. Consistently, mMCP-4 but not human chymase hydrolyzed Ang II and mMCP-1 showed little hydrolytic activity against Ang II. These data suggest that not only human chymase but also mMCP-1 might possess a physiological role in Ang II formation. Our findings also imply that the Ang-converting activity of chymase may not be related to the categorization of chymase into alpha- or beta-type based on their primary structure.  相似文献   

7.
8.
The proteolytic activation of pro-matrix metalloproteinase (MMP)-9 by conversion of the 92-kDa precursor into an 82-kDa active form has been observed in chronic wounds, tumor metastasis, and many inflammation-associated diseases, yet the mechanistic pathway to control this process has not been identified. In this report, we show that the massive expression and activation of MMP-9 in skin tissue from patients with chronically unhealed wounds could be reconstituted in vitro with cultured normal human skin by stimulation with transforming growth factor-beta and tumor necrosis factor (TNF)-alpha. We dissected the mechanistic pathway for TNF-alpha induced activation of pro-MMP-9 in human skin. We found that proteolytic activation of pro-MMP-9 was mediated by a tissue-associated chymotrypsin-like proteinase, designated here as pro-MMP-9 activator (pM9A). This unidentified activator specifically converted pro-MMP-9 but not pro-MMP-2, another member of the gelatinase family. The tissue-bound pM9A was steadily expressed and not regulated by TNF-alpha, which indicated that the cytokine-mediated activation of pro-MMP-9 might be regulated at the inhibitor level. Indeed, the skin constantly secreted tissue inhibitor of metalloproteinase-1 at the basal state. TNF-alpha, but not transforming growth factor-beta, down-regulated this inhibitor. The TNF-alpha-mediated activation of pro-MMP-9 was tightly associated with down-regulation of tissue inhibitor of metalloproteinase-1 in a dose-dependent manner. To establish this linkage, we demonstrate that the recombinant tissue inhibitor of metalloproteinase-1 could block the activation of pro-MMP-9 by either the intact skin or skin fractions. Thus, these studies suggest a novel regulation for the proteolytic activation of MMP-9 in human tissue, which is mediated by tissue-bound activator and controlled by down-regulation of a specific inhibitor.  相似文献   

9.
A second-degree epidermal scald burn in mice elicits an inflammatory response mediated by natural IgM directed to nonmuscle myosin with complement activation that results in ulceration and scarring. We find that such burn injury is associated with early mast cell (MC) degranulation and is absent in WBB6F1-Kit(W)/Kit(Wv) mice, which lack MCs in a context of other defects due to a mutation of the Kit receptor. To address further an MC role, we used transgenic strains with normal lineage development and a deficiency in a specific secretory granule component. Mouse strains lacking the MC-restricted chymase, mouse MC protease (mMCP)-4, or elastase, mMCP-5, show decreased injury after a second-degree scald burn, whereas mice lacking the MC-restricted tryptases, mMCP-6 and mMCP-7, or MC-specific carboxypeptidase A3 activity are not protected. Histologic sections showed some disruption of the epidermis at the scald site in the protected strains suggesting the possibility of topical reconstitution of full injury. Topical application of recombinant mMCP-5 or human neutrophil elastase to the scalded area increases epidermal injury with subsequent ulceration and scarring, both clinically and morphologically, in mMCP-5-deficient mice. Restoration of injury requires that topical administration of recombinant mMCP-5 occurs within the first hour postburn. Importantly, topical application of human MC chymase restores burn injury to scalded mMCP-4-deficient mice but not to mMCP-5-deficient mice revealing nonredundant actions for these two MC proteases in a model of innate inflammatory injury with remodeling.  相似文献   

10.
Matrix metalloproteinase-9 (MMP-9) may play a critical catalytic role in tissue remodeling in vivo, but it is secreted by cells as a stable, inactive zymogen, pro-MMP-9, and requires activation for catalytic function. A number of proteolytic enzymes activate pro-MMP-9 in vitro, but the natural activator(s) of MMP-9 is unknown. To examine MMP-9 activation in a cellular setting we employed cultures of human tumor cells (MDA-MB-231 breast carcinoma cells) that were induced to produce MMP-9 over a 200-fold concentration range (0.03-8.1 nM). The levels of tissue inhibitors of metalloproteinase (TIMPs) in the induced cultures remain relatively constant at 1-4 nM. Quantitation of the zymogen/active enzyme status of MMP-9 in the MDA-MB-231 cultures indicates that even in the presence of potential activators, the molar ratio of endogenous MMP-9 to TIMP dictates whether pro-MMP-9 activation can progress. When the MMP-9/TIMP ratio exceeds 1.0, MMP-9 activation progresses, but through an interacting protease cascade involving plasmin and stromelysin 1 (MMP-3). Plasmin, generated by the endogenous urokinase-type plasminogen activator, is not an efficient activator of pro-MMP-9, neither the secreted pro-MMP-9 nor the very low levels of pro-MMP-9 associated with intact cells. Although plasmin can proteolytically process pro-MMP-9, this limited action does not yield an enzymatically active MMP-9, nor does it cause the MMP-9 to be more susceptible to activation. Plasmin, however, is very efficient at generating active MMP-3 (stromelysin-1) from exogenously added pro-MMP-3. The activated MMP-3 becomes a potent activator of the 92-kDa pro-MMP-9, yielding an 82-kDa species that is enzymatically active in solution and represents up to 50-75% conversion of the zymogen. The activated MMP-9 enhances the invasive phenotype of the cultured cells as their ability to both degrade extracellular matrix and transverse basement membrane is significantly increased following zymogen activation. That this enhanced tissue remodelling capability is due to the activation of MMP-9 is demonstrated through the use of a specific anti-MMP-9 blocking monoclonal antibody.  相似文献   

11.
Mucosal mast cells (MMC) play an important role in the immune response against selected species of intestinal nematode. The kinetics with which different strains of inbred mice resolve infection with Trichinella spiralis correlates with their ability to mount MMC responses in the intestinal mucosa. Homologues of MMC that express and constitutively secrete abundant amounts of the granule chymase, mouse mast cell protease-1 (mMCP-1), can be generated in vitro from bone marrow cultures supplemented with interleukins-3 and -9, stem cell factor and transforming growth factor-beta1. Using the enhanced growth characteristics of these MMC homologues, a novel limiting dilution assay for mast cell precursor (MCp) frequency has been developed. The assay is highly specific, in that cultures containing mast cells are identified with mMCP-1 specific antibody, and almost three-fold more sensitive than previously published systems. MCp frequencies were compared in BALB/c and C57/BL10 strains of mice that, respectively, respond rapidly and slowly to infection with T. spiralis. MCp frequency (1/378 bone marrow cells) was significantly greater in BALB/c than C57/BL10 mice (frequency: 1/751). Similarly the rate of growth of MMC homologues and the production of mMCP-1 was significantly greater in BALB/c than in C57/BL10 bone marrow cultures.  相似文献   

12.
Tumor cells are surrounded by infiltrating inflammatory cells, such as lymphocytes, neutrophils, macrophages, and mast cells. A body of evidence indicates that mast cells are associated with various types of tumors. Although role of mast cells can be directly related to their granule content, their function in angiogenesis and tumor progression remains obscure. This study aims to understand the role of mast cells in these processes. Tumors were chemically induced in BALB/c mice and tumor progression was divided into Phases I, II and III. Phase I tumors exhibited a large number of mast cells, which increased in phase II and remained unchanged in phase III. The expression of mouse mast cell protease (mMCP)-4, mMCP-5, mMCP-6, mMCP-7, and carboxypeptidase A were analyzed at the 3 stages. Our results show that with the exception of mMCP-4 expression of these mast cell chymase (mMCP-5), tryptases (mMCP-6 and 7), and carboxypeptidase A (mMC-CPA) increased during tumor progression. Chymase and tryptase activity increased at all stages of tumor progression whereas the number of mast cells remained constant from phase II to III. The number of new blood vessels increased significantly in phase I, while in phases II and III an enlargement of existing blood vessels occurred. In vitro, mMCP-6 and 7 are able to induce vessel formation. The present study suggests that mast cells are involved in induction of angiogenesis in the early stages of tumor development and in modulating blood vessel growth in the later stages of tumor progression.  相似文献   

13.
Heparin-deficient mice, generated by gene targeting of N-deacetylase/N-sulfotransferase-2 (NDST-2), display severe mast cell defects, including an absence of stored mast cell proteases. However, the mechanism behind these observations is not clear. Here we show that NDST-2+/+ bone marrow-derived mast cells cultured in the presence of IL-3 synthesise, in addition to highly sulphated chondroitin sulphate (CS), small amounts of equally highly sulphated heparin-like polysaccharide. The corresponding NDST-2-/- cells produced highly sulphated CS only. Carboxypeptidase A (CPA) activity was detected in NDST+/+ cells but was almost absent in the NDST-/- cells, whereas tryptase (mouse mast cell protease 6; mMCP-6) activity and antigen was detected in both cell types. Antigen for the chymase mMCP-5 was detected in NDST-2+/+ cells but not in the heparin-deficient cells. Northern blot analysis revealed mRNA expression of CPA, mMCP-5 and mMCP-6 in both wild-type and NDST-2-/- cells. A approximately 36 kDa CPA band, corresponding to proteolytically processed active CPA, as well as a approximately 50 kDa pro-CPA band was present in NDST-2+/+ cells. The NDST-2-/- mast cells contained similar levels of pro-CPA as the wild-type mast cells, but the approximately 36 kDa band was totally absent. This indicates that the processing of pro-CPA to its active form may require the presence of heparin and provides the first insight into a mechanism by which the absence of heparin may cause disturbed secretory granule organisation in mast cells.  相似文献   

14.
Endostatin, a 20-kDa collagen XVIII fragment, inhibits angiogenesis and tumor growth in vivo, but the mechanisms are still unclear. Matrix metalloproteases (MMPs), a family of extracellular and membrane-associated endopeptidases, collectively digest almost all extracellular matrix and basement membrane components, and thus play an important role in tumor progression. We studied the effects of recombinant human endostatin on human MMP-2, -9, -8, and -13. We found that endostatin inhibited the activation and catalytic activity of pro-MMP-9 and -13 as well as recombinant pro-MMP-2. It prevented the fragmentation of pro-MMP-2 that was associated with reduction of catalytic activity. Endostatin had no effect on MMP-8 as shown by collagenase activity assays. An in vitro migration assay and an in vivo chicken chorioallantoic membrane intravasation assay with the human tongue squamous cell carcinoma cell line HSC-3 revealed the biphasic nature of endostatin; low endostatin concentrations inhibited intravasation and migration of these cells in a dose-dependent manner, but at increased concentrations, the inhibitory effect was far less efficient. The results show that endostatin blocks the activation and activities of certain tumor-associated pro-MMPs, such as pro-MMP-2, -9, and -13, which may explain, at least in part, the antitumor effect of endostatin. Our results also suggest that endostatin inhibits tumor progression by directly affecting the tumor cells and not just acting via endothelial cells and blockage of angiogenesis.  相似文献   

15.
A rate-limiting step of tumor cell metastasis is matrix degradation by active matrix metalloproteinases (MMPs). It is known that reactive oxygen species are involved in tumor metastasis. Sustained production of H(2)O(2) by phenazine methosulfate (PMS) induced activation of pro-MMP-2 through the induction of membrane type 1-MMP (MT1-MMP) expression in HT1080 cells. MMP-2, MMP-9, and tissue inhibitor of metalloproteinase-1 and -2 levels were changed negligibly by PMS. A one time treatment with H(2)O(2) did not induce activation of MMPs. It was also demonstrated that superoxide anions and hydroxyl radicals were not related to PMS action. PMS-induced pro-MMP-2 activation was regulated by the receptor tyrosine kinases, especially the receptors of platelet-derived growth factor and vascular endothelial growth factor, and downstream on the phosphatidylinositol 3-kinase/NF-kappa B pathway but not Ras, cAMP-dependent protein kinase, protein kinase C, and mitogen-activated protein kinases. PMS did not induce pro-MMP-2 activation in T98G and NIH3T3 cells. This may be related to a low level of MT1-MMP, indicating a threshold level of MT1-MMP is important for pro-MMP-2 activation. Furthermore, PMS increased cell motility and invasion but decreased cell-cell interaction. Cell-matrix interaction was not affected by PMS.  相似文献   

16.
Although chymases are known to exhibit species differences in regard to angiotensin (Ang) II generation and degradation, their properties have never been compared under the same experimental conditions. We analyzed the processing of Ang I by chymases of a variety of species (human chymase, dog chymase, hamster chymase-1, rat mast cell protease-1 [rMCP-1], mouse mast cell protease-4 [mMCP-4]) at physiological ionic strength and under neutral pH conditions. Human chymase generated Ang II from Ang I without further degradation, whereas the chymases of other species generated Ang II, followed by degradation at the Tyr4-Ile5 site in a time-dependent manner. Kinetic analysis showed that in terms of Ang II generating activity (analyzed by cleavage of the Phe8-His9 bond using the model peptide Ang(5-10), Ile5-His6-Pro7-Phe8-His9-Leu10), the chymases ranked as follows: dog > human > hamster > mouse > rat (kcat/Km: 18, 11, 0.69, 0.059, 0.030 microM-1min-1), and that in terms of Ang II degrading activity (i.e., cleavage of the Tyr4-Ile5 bond of Ang II), the order was hamster > rat > mouse > dog (kcat/Km: 5.4, 4.8, 0.39, 0.29 microM-lmin-1). These results suggest species differences in the contribution of chymases to local Ang II generation and degradation.  相似文献   

17.
Previously we have shown that THP-1 cells synthesize matrix metalloproteinase-9 (MMP-9) where a fraction of the enzyme is strongly linked to a proteoglycan (PG) core protein. In the present work we show that these pro-MMP-9.PG heteromers have different biochemical properties compared with the monomeric form of pro-MMP-9. In these heteromers, the fibronectin II-like domain in the catalytic site of the enzyme is hidden, and the fibronectin II-like-mediated binding to gelatin and collagen is prevented. However, a fraction of the pro-MMP-9.PG heteromers interacted with gelatin and collagen. This interaction was not through the chondroitin sulfate (CS) part of the PG molecule but, rather, through a region in the PG core protein, a new site induced by the interaction of pro-MMP-9 and the PG core protein, or a non-CS glycosaminoglycan part of the PG molecule. The interaction between pro-MMP-9.PG heteromers and gelatin was weaker than the interaction between pro-MMP-9 and gelatin. In contrast, collagen I bound to pro-MMP-9.PG heteromers and pro-MMP-9 with approximately the same affinity. Removal of CS chains from the PG part of the heteromers did not affect the binding to gelatin and collagen. Although the identity of the PG core protein is not known, this does not have any impact on the described biochemical properties of the heteromer or its pro-MMP-9 component. It is also shown that a small fraction of the PG, which is not a part of the pro-MMP-9.PG heteromer, can bind gelatin. As for the pro-MMP-9.PG heteromers, this was independent of the CS chains. The structure that mediates the binding of free PG to gelatin is different from the corresponding structure in the pro-MMP-9.PG heteromer, because they were eluted from gelatin-Sepharose columns under totally different conditions. Although only a small amount of pro-MMP-9.PG heteromer is formed, the heteromer may have fundamental physiological importance, because only catalytic amounts of the enzyme are required to digest physiological targets.  相似文献   

18.
Galanin is a neuropeptide that is widely distributed in the central and peripheral nervous systems. Some small cell lung carcinoma (SCLC) cell lines such as SBC-3A release only the high-molecular-mass form, with lower molecular mass forms being undetectable. To investigate the mechanism of processing of progalanin to active peptide, we studied galanin-LI in both the culture media of SBC-3A cells and in extracts from in vivo mouse SBC-3A tumors. SBC-3A cells were found to release high molecular mass galanin, but did not release active peptides. In contrast, tumor extract contained both high-molecular-mass galanin, and a cleaved lower-molecular-mass form of the peptide (8, 5 and 2 kDa). The lower-molecular-mass peptide was identified as galanin(1-20) by MALDI-TOF mass spectrometry. We then looked at MMP-2 and MMP-9 release from SBC-3A cells and tumor tissue treated with galanin and progalanin, as revealed by gelatin zymography. Galanin elicited pro-MMP-2 and pro-MMP-9 release from SBC-3A cells and tumor tissue; however, recombinant progalanin induced pro-MMP-2 and pro-MMP-9 release from tumor tissue only. This study has shown that the galanin-LI released from SCLC SBC-3A cells consisted of the high-molecular-mass peptide form, and was processed extracellularly to galanin(1-20). Furthermore, galanin was seen to induce pro-MMP-2 and pro-MMP-9 release from SBC-3A cells.  相似文献   

19.
Matrix metalloproteases (MMPs) are proteolytic enzymes that regulate extracellular matrix turnover and aid in restoring tissue architecture following injury. There is an emerging role for extracellular matrix destruction in the pathogenesis of chronic neutrophilic lung diseases. In this study, we examined the expression and activity profiles of MMPs in lower airway secretions from cystic fibrosis (CF) patients, patients with acute respiratory failure (ARF), and normal controls. A discrete repertoire of MMP isoforms was found in the CF samples, with robust MMP-9 expression compared with normal controls and ARF. CF samples possessed increased levels of active MMP-9, as well as decreased amounts of tissue inhibitor of metalloprotease-1 (TIMP-1), a natural inhibitor of MMP-9. The CF inpatient samples demonstrated fully active MMP-9 activity compared with CF outpatients, ARF, and normal controls. CF samples also demonstrated increased human neutrophil elastase (HNE) levels compared with ARF and normal controls. To examine potential mechanisms for the protease dysregulation seen in the CF clinical samples, in vitro studies demonstrated that HNE could activate pro-MMP-9 and also degrade TIMP-1; this HNE-based activation, however, was not seen with MMP-8. A strong correlation was seen between HNE and MMP-9 activity in CF inpatient samples. Finally, the dysregulated MMP-9 activity seen in CF inpatient sputum samples could be significantly reduced by the use of MMP-9 inhibitors. Collectively, these findings further emphasize the proposed protease/antiprotease imbalance in chronic neutrophilic lung disease, providing a potential mechanism contributing to this proteolytic dysregulation.  相似文献   

20.
Increased release of IL-18 in the skin causes atopic dermatitis (AD)-like skin lesions, suggesting a role of IL-18 in the pathogenesis of AD. Caspase-1 is a well-known activator of IL-18, but caspase-1 knockout mice still have biologically active IL-18. Normal human keratinocyte constitutively produces pro-IL-18, but it is unable to activate it, suggesting the existence of an alternative pathway for IL-18 in the skin. Dermal accumulation of mast cells is commonly observed in AD patients and in experimental mouse models of AD. Connective tissue mast cells contain high amounts of chymase and tryptase in their cytoplasmic granules. In the present study, we demonstrated that activation of IL-18 is a novel function of human mast cell chymase. Human mast cell chymase rapidly cleaves recombinant pro-IL-18 at 56-phenylalanine and produces a biologically active IL-18 fragment that is smaller than any other reported IL-18-derived species. The human mast cell chymase and the novel IL-18-derived active peptide may be novel therapeutic targets in AD- and IL-18-associated diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号