首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cyt toxins produced by the bacteria Bacillus thuringiensis show insecticidal activity against some insects, mainly dipteran larvae, being able to kill mosquitoes and black flies. However, they also possess a general cytolytic activity in vitro, showing hemolytic activity in red blood cells. These proteins are composed of two outer layers of α-helix hairpins wrapped around a β-sheet. With regard to their mode of action, one model proposed that the two outer layers of α-helix hairpins swing away from the β-sheet, allowing insertion of β-strands into the membrane forming a pore after toxin oligomerization. The other model suggested a detergent-like mechanism of action of the toxin on the surface of the lipid bilayer. In this work, we cloned the N- and C-terminal domains form Cyt1Aa and analyzed their effects on Cyt1Aa toxin action. The N-terminal domain shows a dominant negative phenotype inhibiting the in vitro hemolytic activity of Cyt1Aa in red blood cells and the in vivo insecticidal activity of Cyt1Aa against Aedes aegypti larvae. In addition, the N-terminal region is able to induce aggregation of the Cyt1Aa toxin in solution. Finally, the C-terminal domain composed mainly of β-strands is able to bind to the SUV liposomes, suggesting that this region of the toxin is involved in membrane interaction. Overall, our data indicate that the two isolated domains of Cyt1Aa have different roles in toxin action. The N-terminal region is involved in toxin aggregation, while the C-terminal domain is involved in the interaction of the toxin with the lipid membrane.  相似文献   

2.
Chp (Cdc42 homologous protein) shares significant sequence and functional identity with the human Cdc42 small GTPase, and like Cdc42, promotes formation of filopodia and activates the p21-activated kinase serine/threonine kinase. However, unlike Cdc42, Chp contains unique amino- and carboxyl-terminal extensions. Here we determined whether Chp, like Cdc42, can promote growth transformation and evaluated the role of the amino- and carboxyl-terminal sequences in Chp function. Surprisingly, we found that a GTPase-deficient mutant of Chp exhibited low transforming activity but that deletion of the amino terminus of Chp greatly enhanced its transforming activity. Thus, the amino terminus may serve as a negative regulator of Chp function. The carboxyl terminus of Cdc42 contains a CAAX (where C is cysteine, A is aliphatic amino acid, X is terminal amino acid) tetrapeptide sequence that signals for the posttranslational modification critical for Cdc42 membrane association and biological function. Although Chp lacks aCAAXmotif, we found that Chp showed carboxyl terminus-dependent localization to the plasma membrane and to endosomes. Furthermore, an intact carboxyl terminus was required for Chp transforming activity. However, treatment with inhibitors of protein palmitoylation, but not prenylation, caused Chp to mislocalize to the cytoplasm. Thus, Chp depends on palmitoylation, rather than isoprenylation, for membrane association and function. In summary, Chp is implicated in cell transformation, and the unique amino and carboxyl termini of Chp represent atypical mechanisms of regulation of Rho GTPase function.  相似文献   

3.
K Ikura  H Yokota  R Sasaki  H Chiba 《Biochemistry》1989,28(5):2344-2348
Transglutaminases (EC 2.3.2.13) catalyze the formation of epsilon-(gamma-glutamyl)lysine cross-links and the substitution of a variety of primary amines for the gamma-carboxamide groups of protein-bound glutaminyl residues. These enzymes are involved in many biological phenomena. In this study, the amino- and carboxyl-terminal sequences of guinea pig liver transglutaminase were identified by sequence analysis to determine whether this enzyme is processed posttranslationally at its terminal regions. Two peptides, believed to contain the amino-terminal sequences of transglutaminase, were isolated from the Pronase digest of the enzyme protein with SP-Sephadex C-25 column chromatography and reverse-phase HPLC. Analyses (amino acid analysis, sequencing after the treatment with an acylamino-acid-releasing enzyme, and fast atom bombardment mass spectrometry) of these peptides indicated that the amino-terminal structure of this enzyme is acetylAla-Glu-Asp-Leu-Ile-Leu-Glu. The candidate for the carboxyl-terminal peptide in the trypsin digest of enzyme was isolated from the unadsorbed fraction of affinity chromatography with anhydrotrypsin agarose gel. The peptide was found to be Asn-Val-Ile-Ile-Gly-Pro-Ala. Both the terminal sequences were completely consistent with those predicted from the cDNA sequence [Ikura, K., Nasu, T., Yokota, H., Tsuchiya, Y., Sasaki, R., & Chiba, H. (1988) Biochemistry 27, 2898-2905]. These results indicated that the amino-terminal processing occurred after or in the course of translation of this enzyme, namely, removal of the initiator methionine and a subsequent acetylation of the alanine residue adjacent to the methionine. Our results did not indicate carboxyl-terminal processing of guinea pig liver transglutaminase.  相似文献   

4.
5.
Dendritic cells (DCs) are thought to mediate HIV-1 transmission but it is becoming evident that different DC subsets at the sites of infection have distinct roles. In the genital tissues, two different DC subsets are present: the Langerhans cells (LCs) and the DC-SIGN(+)-DCs. Although DC-SIGN(+)-DCs mediate HIV-1 transmission, recent data demonstrate that LCs prevent HIV-1 transmission by clearing invading HIV-1 particles. However, this protective function of LCs is dependent on the function of the C-type lectin Langerin: blocking Langerin function by high virus concentrations enables HIV-1 transmission by LCs. Here, we will discuss the molecular mechanisms involved in HIV-1 transmission and viral clearance. A better understanding of these processes is crucial to understand and develop strategies to combat transmission.  相似文献   

6.
7.
The airway epithelial barrier provides defenses against inhaled antigens and pathogens, and alterations of epithelial barrier function have been proposed to play a significant role in the pathogenesis of chronic airway diseases. Although the epidermal growth factor receptor (EGFR) plays roles in various physiological and pathological processes on the airway epithelium, the role of EGFR on barrier function in the airway remains largely unknown. In the present study, we assessed the effects of EGFR activation on paracellular permeability in airway epithelial cells (AECs). EGFR activation induced by the addition of EGF increased transepithelial electrical resistance (TER) in AECs. An EGFR-blocking antibody eradicated the development of TER, paracellular influx of dextran, and spatial organization of tight junction. Moreover, the effects of EGFR activation on paracellular permeability were eradicated by knockdown of occludin. To identify the EGFR signaling pathway that regulates permeability barrier development, we investigated the effects of several MAP kinase inhibitors on permeability barrier function. Pretreatment with a JNK-specific inhibitor, but not an ERK- or p38-specific inhibitor, attenuated the development of TER induced by EGFR activation. Rac1 is one of the upstream activators for JNK in EGFR signaling. Rac1 knockdown attenuated the phosphorylation of JNK activation and EGFR-mediated TER development. These results suggest that EGFR positively regulates permeability barrier development through the Rac1/JNK-dependent pathway.  相似文献   

8.
The transmembrane ephrinB ligands and their Eph receptor tyrosine kinases are known to regulate excitatory synaptic functions in the hippocampus. In the CA3-CA1 synapse, ephrinB ligands are localized to the post-synaptic membrane, while their cognate Eph receptors are presumed to be pre-synaptic. Interaction of ephrinB molecules with Eph receptors leads to changes in long-term potentiation (LTP), which has been reported to be mediated by reverse signaling into the post-synaptic membrane. Here, we demonstrate that the cytoplasmic domain of ephrinB3 and hence reverse signaling is not required for ephrinB dependent learning and memory tasks or for LTP of these synapses. Consistent with previous reports, we find that ephrinB3(KO) null mutant mice exhibit a striking reduction in CA3-CA1 LTP that is associated with defective learning and memory tasks. We find the null mutants also show changes in both pre- and post-synaptic proteins including increased levels of synapsin and synaptobrevin and reduced levels of NMDA receptor subunits. These abnormalities are not observed in ephrinB3(lacZ) reverse signaling mutants that specifically delete the ephrinB3 intracellular region, supporting a cytoplasmic domain-independent forward signaling role for ephrinB3 in these processes. We also find that both ephrinB3(KO) and ephrinB3(lacZ) mice show an increased number of excitatory synapses, demonstrating a cytoplasmic-dependent reverse signaling role of ephrinB3 in regulating synapse number. Together, these data suggest that ephrinB3 may act like a receptor to transduce reverse signals to regulate the number of synapses formed in the hippocampus, and that it likely acts to stimulate forward signaling to modulate a number of other proteins involved in synaptic activity and learning/memory.  相似文献   

9.
RNAs in the mitochondria of Physarum polycephalum contain nonencoded nucleotides that are added during RNA synthesis. Essentially all steady-state RNAs are accurately and fully edited, yet the signals guiding these precise nucleotide insertions are presently unknown. To localize the regions of the template that are required for editing, we constructed a series of chimeric templates that substitute varying amounts of DNA either upstream of or downstream from C insertion sites. Remarkably, all sequences necessary for C addition are contained within ∼9 base pairs on either side of the insertion site. In addition, our data strongly suggest that sequences within this critical region affect different steps in the editing reaction. Template alterations upstream of an editing site influence nucleotide selection and/or insertion, while downstream changes affect editing site recognition and templated extension from the added, unpaired nucleotide. The data presented here provide the first evidence that individual regions of the DNA template play discrete mechanistic roles and represent a crucial initial step toward defining the source of the editing specificity in Physarum mitochondria. In addition, these findings have mechanistic implications regarding the potential involvement of the mitochondrial RNA polymerase in the editing reaction.  相似文献   

10.
The COOH-terminal sequence KDEL has been shown to be essential for the retention of several proteins in the lumen of the endoplasmic reticulum (Munro S., and Pelham, H. R. B. (1987) Cell 48, 899-907; Pelham, H. R. B. (1988) EMBO J. 7, 913-918; Mazzarella; R. A., Srinivasan, M., Haugejorden, S. M., and Green, M. (1990) J. Biol. Chem. 265, 1092-1101). We have previously demonstrated that variants to the KDEL retention signal, particularly at the initial two positions of the tetrapeptide, can be made without affecting its ability to direct intracellular retention when appended to the neuropeptide Y precursor (pro-NPY) (Andres, D. A., Dickerson, I. M., and Dixon, J. E. (1990) J. Biol. Chem. 265, 5952-5955). To further investigate the nature of the KDEL retention signal, oligonucleotide-directed mutagenesis and transfection was used to generate stable mouse anterior pituitary AtT-20 cell lines expressing pro-NPY mutants with variants of the KDEL sequence added to their direct carboxyl terminus. Analyses of dibasic processing and indirect immunofluorescent microscopy of AtT-20 subclones were consistent with the retention of the pro-NPY mutants bearing the COOH-terminal extensions QDEL, KEDL, or KDEI within the endoplasmic reticulum. A change in the final amino acid of the tetrapeptide from Leu to Val abolished retention completely, and the peptide hormone was processed and secreted. These results indicate that only a limited number of conservative changes can be made to the final two positions of the tetrapeptide without abolishing activity and suggest a highly specific interaction of the retention signal and the KDEL receptor.  相似文献   

11.
BACKGROUND: Allergic asthma is associated with an increased number of eosinophils in the airway wall. Eosinophils secrete cationic proteins, particularly major basic protein (MBP). AIM: To investigate the effect of synthetic cationic polypeptides such as poly-L-arginine, which can mimic the effect of MBP, on airway epithelial cells. METHODS: Cultured airway epithelial cells were exposed to poly-L-arginine, and effects were determined by light and electron microscopy. RESULTS: Poly-L-arginine induced apoptosis and necrosis. Transmission electron microscopy showed mitochondrial damage and changes in the nucleus. The tight junctions were damaged, as evidenced by penetration of lanthanum. Scanning electron microscopy showed a damaged cell membrane with many pores. Microanalysis showed a significant decrease in the cellular content of magnesium, phosphorus, sodium, potassium and chlorine, and an increase in calcium. Plakoglobin immunoreactivity in the cell membrane was decreased, indicating a decrease in the number of desmosomes CONCLUSIONS: The results point to poly-L-arginine induced membrane damage, resulting in increased permeability, loss of cell-cell contacts and generalized cell damage.  相似文献   

12.

The inducible model of clones generated from the cervical cancer epithelial HeLa cell line has shown the role of DOCK10 as a guanine-nucleotide exchange factor for Rho GTPases Cdc42 and Rac1 and as an inducer of filopodia and plasma membrane (PM) ruffles. In this model, constitutively active (CA) mutants of Cdc42 and Rac1 promote filopodia and ruffles, respectively, as in other models. DOCK9 also induces filopodia and ruffles, although ruffling activity is less prominent. By exploiting this model further, the aim of this work is to provide a more complete understanding of the role of Cdc42 and Rac1, and their interactions with DOCK10 and DOCK9, in regulation of PM protrusions. New clones have been generated from HeLa, including single clones expressing one form of wild-type (WT) or dominant negative (DN) Cdc42 or Rac1, and double clones co-expressing one of them together with either DOCK10 or DOCK9. Expression of WT- and DN-Cdc42 induced filopodia. WT-Cdc42 and, especially, DN-Cdc42 also gave rise to veil protrusions, which were neutralized by DOCK10. Moreover, DN-Cdc42 stimulated the emergence of ruffles, further increased by DOCK10, and WT-Cdc42 also augmented ruffles in presence of DOCK9 and DOCK10. WT-Rac1 greatly increased PM blebbing, as did DN-Rac1 more moderately. In both cases, blebs were enhanced by DOCK10. DN-Rac1 and CA-Rac1 moderately raised filopodia, and DOCK10 and DOCK9 had opposed effects on filopodia (up and down, respectively) in presence of WT-Rac1. As conclusions, we highlight that Cdc42 promotes filopodia regardless of its conformational state, and Rac1 induces blebs in conformations other than CA, especially WT-Rac1, in the inducible HeLa clones. The model could be useful to learn more about the mechanisms underlying PM protrusions.

  相似文献   

13.
14.
The O-glycans that decorate mucin glycoproteins contribute to the biophysical and biochemical properties of these molecules and hence their function as a barrier and lubricant on epithelial surfaces. Alterations in mucin O-glycosylation in certain diseases may contribute to pathology. It is known that both the host cell type and the amino acid sequence of the mucin tandem repeat contribute to the O-glycosylation of a mucin molecule. We expressed an epitope-tagged MUC1 mucin cDNA construct in the airway cell line 16HBE14o- and the colon carcinoma cell line Caco2 and used Fast Atom Bombardment Mass Spectrometry to evaluate the contribution of the host cell to differences in O-glycosylation of a single mucin. Many of the glycans detected on the MUC1 mucin were common to both cell types, as would be predicted from biosynthetic constraints. However, MUC1 synthesized in the airway cell line showed comparatively low levels of sialylation but carried a range of oligo-N-acetyllactosamine structures that were not seen in the colon carcinoma cell line.  相似文献   

15.
16.
The tumor suppressor PTEN is a putative negative regulator of the phosphatidylinositol 3-kinase/Akt pathway. Exposure to Zn2+ ions induces Akt activation, suggesting that PTEN may be modulated in this process. Therefore, the effects of Zn2+ on PTEN were studied in human airway epithelial cells and rat lungs. Treatment with Zn2+ resulted in a significant reduction in levels of PTEN protein in a dose- and time-dependent fashion in a human airway epithelial cell line. This effect of Zn2+was also observed in normal human airway epithelial cells in primary culture and in rat airway epithelium in vivo. Concomitantly, levels of PTEN mRNA were also significantly reduced by Zn2+ exposure. PTEN phosphatase activity evaluated by measuring Akt phosphorylation decreased after Zn2+ treatment. Pretreatment of the cells with a proteasome inhibitor significantly blocked zinc-induced reduction of PTEN protein as well as the increase in Akt phosphorylation, implicating the involvement of proteasome-mediated PTEN degradation. Further study revealed that Zn2+-induced ubiquitination of PTEN protein may mediate this process. A phosphatidylinositol 3-kinase inhibitor blocked PTEN degradation induced by Zn2+, suggesting that phosphatidylinositol 3-kinase may participate in the regulation of PTEN. However, both the proteasome inhibitor and phosphatidylinositol 3-kinase inhibitor failed to prevent significant down-regulation of PTEN mRNA expression in response to Zn2+. In summary, exposure to Zn2+ ions causes PTEN degradation and loss of function, which is mediated by an ubiquitin-associated proteolytic process in the airway epithelium.  相似文献   

17.
Pseudomonas aeruginosa is the major pathogenic bacteria in cystic fibrosis and other forms of bronchiectasis. Growth in antibiotic-resistant biofilms contributes to the virulence of this organism. Sodium nitrite has antimicrobial properties and has been tolerated as a nebulized compound at high concentrations in human subjects with pulmonary hypertension; however, its effects have not been evaluated on biotic biofilms or in combination with other clinically useful antibiotics. We grew P. aeruginosa on the apical surface of primary human airway epithelial cells to test the efficacy of sodium nitrite against biotic biofilms. Nitrite alone prevented 99% of biofilm growth. We then identified significant cooperative interactions between nitrite and polymyxins. For P. aeruginosa growing on primary CF airway cells, combining nitrite and colistimethate resulted in an additional log of bacterial inhibition compared to treating with either agent alone. Nitrite and colistimethate additively inhibited oxygen consumption by P. aeruginosa. Surprisingly, whereas the antimicrobial effects of nitrite in planktonic, aerated cultures are nitric oxide (NO) dependent, antimicrobial effects under other growth conditions are not. The inhibitory effect of nitrite on bacterial oxygen consumption and biofilm growth did not require NO as an intermediate as chemically scavenging NO did not block growth inhibition. These data suggest an NO-radical independent nitrosative or oxidative inhibition of respiration. The combination of nebulized sodium nitrite and colistimethate may provide a novel therapy for chronic P. aeruginosa airway infections, because sodium nitrite, unlike other antibiotic respiratory chain “poisons,” can be safely nebulized at high concentration in humans.  相似文献   

18.
In mammalian cells, epidermal growth factor (EGF) stimulation promotes multivesicular body (MVB) formation and inward vesiculation within MVB. Annexin 1 is required for EGF-stimulated inward vesiculation but not MVB formation, demonstrating that MVB formation (the number of MVBs/unit cytoplasm) and inward vesiculation (the number of internal vesicles/MVB) are regulated by different mechanisms. Here, we show that EGF-stimulated MVB formation requires the tumor susceptibility gene, Tsg101, a component of the ESCRT (endosomal sorting complex required for transport) machinery. Depletion of Tsg101 potently inhibits EGF degradation and MVB formation and causes the vacuolar domains of the early endosome to tubulate. Although Tsg101 depletion inhibits MVB formation and alters the morphology of the early endosome in unstimulated cells, these effects are much greater after EGF stimulation. In contrast, depletion of hepatocyte growth factor receptor substrate (Hrs) only modestly inhibits EGF degradation, does not induce tubulation of the early endosome, and causes the generation of enlarged MVBs that retain the ability to fuse with the lysosome. Together, these results indicate that Tsg101 is required for the formation of stable vacuolar domains within the early endosome that develop into MVBs and Hrs is required for the accumulation of internal vesicles within MVBs and that both these processes are up-regulated by EGF stimulation.  相似文献   

19.
Classic cadherins are important regulators of tissue morphogenesis. The predominant cadherin in epithelial cells, E-cadherin, has been extensively studied because of its critical role in normal epithelial development and carcinogenesis. Epithelial cells may also coexpress other cadherins, but their roles are less clear. The Madin Darby canine kidney (MDCK) cell line has been a popular mammalian model to investigate the role of E-cadherin in epithelial polarization and tubulogenesis. However, MDCK cells also express relatively high levels of cadherin-6, and it is unclear whether the functions of this cadherin are redundant to those of E-cadherin. We investigate the specific roles of both cadherins using a knockdown approach. Although we find that both cadherins are able to form adherens junctions at the basolateral surface, we show that they have specific and mutually exclusive roles in epithelial morphogenesis. Specifically, we find that cadherin-6 functions as an inhibitor of tubulogenesis, whereas E-cadherin is required for lumen formation. Ablation of cadherin-6 leads to the spontaneous formation of tubules, which depends on increased phosphoinositide 3-kinase (PI3K) activity. In contrast, loss of E-cadherin inhibits lumen formation by a mechanism independent of PI3K.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号